Mean ergodic semigroups of contractions in W*-algebras

  • Burkhard Kümmerer
Contributed Papers IV. Structure of Groups and Dynamical Systems
Part of the Lecture Notes in Physics book series (LNP, volume 79)


Ergodic Theorem Continuous Linear Operator Mathematical Abstraction Invariant Ideal Fixed Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Davies, E.B., Quantum Theory of Open Systems. London: Academic Press, 1976.Google Scholar
  2. [2]
    Emch, G., Algebraic Methods in Statistical Mechanics and Quantum Field Theory. New York: John Wiley & Sons, Inc. 1972.Google Scholar
  3. [3]
    Kovacs, I. and Szücs, J., Ergodic Type Theorems in von Neumann Algebras. Acta Sci. Math. (Szeged) 27 (1966), 233–246.Google Scholar
  4. [4]
    Kämmerer, B. and Nagel, R., Mean Ergodic Semigroups in W*-algebras. To be published.Google Scholar
  5. [5]
    Lindblad, G., On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 48 (1976), 119–130.Google Scholar
  6. [6]
    Nagel, R., Mittelergodische Halbgruppen linearer Operatoren. Ann. Inst. Fourier, Grenoble 23 (1973), 65–87.Google Scholar
  7. [7]
    Nagel, R., Mean Ergodic Semigroups and Invariant Ideals in Ordered Banach Spaces. Lecture Notes in Physics 29, 309–315. Berlin: Springer 1974.Google Scholar
  8. [8]
    Sakai, S., C*-algebras and W*-algebras. Berlin: Springer 1971.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Burkhard Kümmerer
    • 1
  1. 1.Mathematisches Institut der Universität TübingenTübingenGermany

Personalised recommendations