On invariants and canonical forms for linear dynamical systems

  • Michiel Hazewinkel
Contributed Papers IV. Structure of Groups and Dynamical Systems
Part of the Lecture Notes in Physics book series (LNP, volume 79)


State Space Canonical Form Discrete Time System Linear Dynamical System Hankel Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold, On Matrices depending on Parameters, Usp.Mat.Nauk 26,2 (1971),101–114)Google Scholar
  2. 2.
    M. Hazewinkel, R.E. Kalman, On Invariants, Canonical Forms and Moduli for Linear, Constant, Finite Dimensional, Dynamical Systems. In: Proc. CNR-CISM symp.on “Algebraic System Theory”, Udine,1975, Lect. Notes Economics and Math.Syst. 131, Springer, 1976, 48–60.Google Scholar
  3. 3.
    M. Hazewinkel, Moduli and Canonical Forms for Linear Dynamical Systems.II: the Topological Case. (To appear J. Math. Syst. Theory,1977).Google Scholar
  4. 4.
    M. Hazewinkel, Moduli and Canonical Forms for Linear Dynamical Systems.III: the Algebraic-Geometric Case. In: C. Martin, R. Hermann(eds), The 1976 AMES Research Centre (NASA) Conference on Geometric Control Theory, Math. Sci. Press, 1977.Google Scholar
  5. 5.
    M. Hazewinkel, Degenerating Families of Linear Dynamical Systems I, Report 7711, Econometric Inst, Erasmus Univ. Rotterdam, 1977.Google Scholar
  6. 6.
    R.E. Kalman, P.L. Falb, M.A. Arbib, Topics in Mathematical Systems Theory, MacGraw-Hill, 1969.Google Scholar
  7. 7.
    L.M. Silverman, Realization of Linear Dynamical Systems, IEEE Trans. AC-16 (1971), 554–567.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Michiel Hazewinkel
    • 1
  1. 1.Dept. Math., Econometric Inst.Erasmus Univ. RotterdamRotterdamThe Netherlands

Personalised recommendations