Some applications of the theory of semigroups to automata

  • H. Jürgensen
Invited Lectures E. Automata and Systems as Examples of Applied (Semi-) Group Theory
Part of the Lecture Notes in Physics book series (LNP, volume 79)


Inverse Semigroup Wreath Product Finite Semigroup Prefix Code Syntactic Monoids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A1.
    Arbib, M.A. (ed.): Algebraic theory of machines, languages, and semigroups. New York, 1968.Google Scholar
  2. B1.
    Brauer, W.: Zu den Grundlagen einer Theorie topologischer sequentieller Systeme und Automaten. GMD, Bericht 31, Bonn, 1970.Google Scholar
  3. Br1.
    Brzozowski, J.A., K. Culik II, and A. Gabrielian:Classification of non-counting, events. J.Comp.Syst.Sci. 5 (1971), 41–53.Google Scholar
  4. Br2.
    Brzozowski, J.A.: Run languages. Seminarbericht 87, Inst. f. Rechner-u. Programmstrukturen, GMD, 1975.Google Scholar
  5. Br3.
    Brzozowski, J.A.: On aperiodic I-monoids. Res. report CS-7S-28, Univ. of Waterloo.Google Scholar
  6. Br4.
    Brzozowski, J.A.: Hierarchies of aperiodic languages. RAIRO, Inf. théor. 10 (1976), 33–49.Google Scholar
  7. Br5.
    Brzozowski, J.A., and R. Knast: The dot depth hierarchy of star free languages is infinite. Res. report CS-76-23, Univ. of Waterloo.Google Scholar
  8. De1.
    Deussen, P.: Krohn-Rhodes-decomposition revised universally. Fak. f. Informatik, Univ. Karlsruhe, Bericht 9, 1975.Google Scholar
  9. De2.
    Deussen, P.: Halbgruppen und Automaten. Berlin, 1971.Google Scholar
  10. Di1.
    Dilger, E.: On permutation-reset automata. Inform. and Contr. 30 (1976), 86–95.Google Scholar
  11. Dig.
    Dilger, E.: Zur Strukturtheorie abstrakter Automaten. Diss. Tübingen, 1977.Google Scholar
  12. Du1.
    Dubreil, P.: Endomorphismes. Sém. Dubreil-Pisot (algèbre et théor. des nombres) 18 (1964/65), No.23.Google Scholar
  13. Ec1.
    Eichner, L.: Die Obergangshalbgruppen linear realisierbarer endlicher Automaten. To appear.Google Scholar
  14. Ei1.
    Eilenberg, S.: Automata, languages, and machines, A,B. New York, 1974, 1976.Google Scholar
  15. G1.
    Gécseg, F., and I. Peák: Algebraic theory of automata. Budapest, 1972.Google Scholar
  16. Ho1.
    Hotzel, E.: Der Kaskadenzerlegungssatz für Halbautomaten. In: GI, 1. Fachtagung über Automatentheorie und formale Sprachen, Bonn, 1973 (K.-H. Böhling and K. Indermark, eds.), Berlin, 1973 (= Lect. Notes in Comp. Sci. 2), 54–63.Google Scholar
  17. Jo1.
    Johansen, P.: An algebraic normal form for regular events. Lyngby, 1972.Google Scholar
  18. Jü1.
    Jürgensen, H.: Einige Eigenschaften der Monoide von Akzeptoren und Ereignissen. EIK 11 (1975), S4S–SS6.Google Scholar
  19. Jü2.
    Jürgensen, H.: Syntaktische Halbgruppen. Proc. 1st workshop-meeting on categorical and algebraic methods in computer science and system theory, 1976. Bericht 37, Abt. Informatik, Univ. Dortmund, 1976, 37–43.Google Scholar
  20. Jü3.
    Jürgensen, H.: Inf-Halbverbände als syntaktische Halbgruppen. To appear in Acta Math. Acad. Sci. Hung.Google Scholar
  21. K11.
    Kleene, S.C.: Introduction to metamathematics. Amsterdam, 1952.Google Scholar
  22. Kr1.
    Krohn, K., and J.L. Rhodes: Algebraic theory of machines, I. Prime decomposition theorem for finite semigroups and machines. Trans.AMS 116 (1965), 450–464.Google Scholar
  23. La1.
    Lallement, G.: The rôle of regular and inverse semigroups in the theory of finite state machines and languages. Proc. sympos. on inverse semigroups, De Kalb, 1973, 44–63.Google Scholar
  24. La2.
    Lallement, G.: On the prime decomposition theorem for finite monoids. Math. Syst. Theor. 3 (1969), 110–118.Google Scholar
  25. La3.
    Lallement, G., and E. Milito: Recognizable languages and finite semilattices of groups. Semigroup Forum 11 (1975), 181–184.Google Scholar
  26. M1.
    Mapкoв, A.A.: Hepeкyppeнтoe кoдиpoвaниe. Пpoблeмы кибepкeтики 8 (1962), 168–186.Google Scholar
  27. Ma1.
    Maxson, C.J., and M. Zeller: Elementary Γ-languages and finite semilattices of groups. Semigroup Forum 13 (1976/77), 385–386.Google Scholar
  28. Mc1.
    McNaughton, R., and S.Papert: Counter-free automata. Cambr., Mass., 1971.Google Scholar
  29. No1.
    Novotný, M.: Einführung in die algebraische Linguistik. Rhein.-Westf. Inst. f. Instrum. Math., Bonn, IIM-Skript 40/67, 1967.Google Scholar
  30. Pa1.
    Paz, A.: Introduction to probabilistic automata. New York, 1971.Google Scholar
  31. P1.
    Perrin, D.: Codes bipréfixes et groupes de permutations. Thèse, Paris, 1975.Google Scholar
  32. Pe1.
    Perrot, J.-F.: Monoides syntactiques des langages algébriques. Acta Inform. 7 (1977), 399–413.Google Scholar
  33. Pe2.
    Perrot, J.-F., and J. Sakarovitsch: A theory of syntactic monoids for context-free languages. Proc. IFIP, Toronto,1977.Google Scholar
  34. Pe3.
    Perrot, J.-F.: Une théorie algébrique des automats finis monogénes. Sympos. Math. 15, 201–244.Google Scholar
  35. Pe4.
    Perrot, J.-F.: Contribution à l'étude des monoides syntactiques et de certains groupes associés aux automates finis. Thèse, Paris, 1972.Google Scholar
  36. Pe5.
    Perrot, J.-F.: Groupes de permutations associés aux codes préfixes finis. In: Permutations, Paris, 1972 (A. Lentin, ed.), Paris, 1974, 19–35.Google Scholar
  37. Pe6.
    Perrot, J.-F.: Informatique et algébre — la théorie des codes à longueur variable. In: Theoretical computer science, 3rd GI conference,Darmstadt, 1977 (H. Tzschach, H. Waldschmidt, H.K.-G. Walter, eds.), Berlin, 1977, 27–44.Google Scholar
  38. R1.
    Reusch, B.: Lineare Automaten. Mannheim, 1969.Google Scholar
  39. Sa1.
    Sakarovitch, J.: Monoides syntactiques et langages algébriques. Thèse 3éme cycle, Paris, 1976.Google Scholar
  40. S1.
    Schein, B.M.: Stationary subsets, stabilizers, and transitive representations of semigroups. Dissertationes Math. (Rozprawy Mat.) 77 (1970).Google Scholar
  41. Sc1.
    Schützenberger, M.P.: On a question concerning certain free submonoids. J. Comb. Theor. 1 (1966), 437–442.Google Scholar
  42. Sc2.
    Schützenberger, M.P.: Sur les monoides finis n'ayant que des sous-groupes triviaux. Sém. Dubreil-Pisot (alg. et théor. des nombres) 18 (1964/65), No. 10.Google Scholar
  43. Sc3.
    Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup Forum 13 (1976), 47–75.Google Scholar
  44. Sc4.
    Schützenberger, M.P.: Une théorie algébrique du codage. Sém. Dubreil-Pisot (algébre et théor. des nombres) 1955/56, No. 15.Google Scholar
  45. Sc5.
    Schützenberger, M.P.: On the synchronizing properties of certain prefix codes. Inform. and control 7 (1964), 23–36.Google Scholar
  46. Sw1.
    Schwarz, St.: On the structure of the semigroup of stochastic matrices. Publ.Math.Inst.Hung. Acad. Sci. A 9,3 (1964), 297–311.Google Scholar
  47. Si1.
    Simon, I.: Piecewise testable events. In: GI, 2nd conf. on automata theory and formal languages, Kaiserslautern, 1975 (H. Brakhage, ed.), Berlin, 1975 (=Lect. Notes in Comp. Sci. 33), 214–222.Google Scholar
  48. Va1.
    Valkema, E.: Zur Charakterisierung formaler Sprachen durch Halbgruppen. Diss., Kiel, 1974.Google Scholar
  49. Va2.
    Valkema, E.: Syntaktische Monoide und Hypercodes. Semigroup Forum 13 (1976/77), 119–126.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. Jürgensen
    • 1
  1. 1.Technische Hochschule DarmstadtInstitut für theoretische InformatikDarmstadt

Personalised recommendations