Advertisement

Group theory of the Landau — Thermodynamic theory of continuous phase transitions in crystals

  • Joseph L. Birman
Invited Lectures D. Symmetry Breaking in Statistical Mechanics and Field Theory
Part of the Lecture Notes in Physics book series (LNP, volume 79)

Abstract

A review is given of group-theory related aspects of the Landau-Thermodynamic Theory of continuous phase transitions in crystals. The review discusses developments of the theory during several time intervals. First interval: the 25 years (1937–62) after the theory was presented; Second interval (1962-77) covers the recent 15 years; Third interval (1977- ) presents some possible directions for work in the future. Thus the first 40 years of this theory were characterized inter alia by elaborations and applications of the group theory aspects of the problem which Landau examined: Given a system with group G; What groups G → G′,... may be achieved by continuous transitions i.e. G → G′,...? What order parameters are consistent with transitions G → G′, or G → G′, ...?

This review will emphasize group-theory related aspects of the theory.

Keywords

Irreducible Representation Maximal Subgroup Continuous Transition Thermodynamic Theory Landau Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L.D. Landau, Phys. Z. Soviet. 11, 26, 545 (1937) (trans. in L.D. Landau “Collected Papers” ed. D. ter Haar, Pergammon (1965) also L. Landau, E. Lifschitz “Statistical Physics” (Pergammon Press).Google Scholar
  2. (2).
    See the contribution by J.M.J. van Leeuwen to this Colloquium (these Proceedings) for literature citations. Also “Critical Phenomena” ed. C. Domb, M. Greene Vol 6 (Academic Press 1977).Google Scholar
  3. (3).
    H. B. Callen “Thermodynamics” (Academic Press, New York).Google Scholar
  4. (4).
    E.M. Lifschitz, Soviet Journal of Physics 6, 61; 251 (1942).Google Scholar
  5. (5a).
    J.L. Birman: “Theory of Crystal Space Groups and Infra-Red and Raman Processes of Insulating Crystals” Handbuch der Physik Vol 25/2b (Springer-Verlag 1974).Google Scholar
  6. (5b).
    C.J. Bradley, A.P. Cracknell: “Mathematical Theory of Symmetry in Solids” (Oxford University Press 1972).Google Scholar
  7. (6).
    G. Ya. Lyubarski: “Application of Group Theory in Physics” (Pergammon Press).Google Scholar
  8. (7).
    V.L. Indenbohm, Kristallografia 5, 115 (1960).Google Scholar
  9. (8).
    J.L. Birman, Phys. Rev. Lett. 17, 1216 (1966).Google Scholar
  10. (9a).
    I.E. Dzyaloshinsky, Sov. Phys. JETP 19, 960 (1964).Google Scholar
  11. (9b).
    S. Goshen, D. Mukhamel, S. Shtrikman, Int. J. Magnetism 6, 22 (1974).Google Scholar
  12. (10).
    A. Michelson, Phys. Rev. B. (in press 1977).Google Scholar
  13. (11).
    J.O. Dimmock, Phys. Rev. 130, 1337 (1963).Google Scholar
  14. (12).
    R. Hornreich, M. Luban, S. Shtrikman, Phys. Rev. Lett. 35, 1678 (1975) and private communication); A. Michelson, Phys. Rev. B, 16, 577 (1977).Google Scholar
  15. (13).
    J.L. Birman, Phys. Rev. Lett. 17, 1216 (1966); Y. Gufan, F.T.T. 13, 225 (1971).Google Scholar
  16. (14).
    B. Lavrencic and T. Shigenari, Proceedings IInd Int'l. Group Theory Colloquium (Nijmegen 1973); and Solid State Comm. 13, 1329 (1973), Ferroelectrics 8, 451 (1974)Google Scholar
  17. (15).
    Yu. A. Izyumov, Uspekhi Fiz Nauk 118, 53 (1976).Google Scholar
  18. (16).
    F.E. Goldrich and J.L. Birman, Phys. Rev. 167, 528 (1968).Google Scholar
  19. (17).
    E. Ascher, Helv. Phys. Acta 39, 446 (1966), Phys. Lett. 20, 352 (1966), J. Phys. C (1977).Google Scholar
  20. (18).
    Y.M. Gufan, V.P. Sakhnenko, Sov. Phys. JETP 36, 1009 (1973); also Sov. Phys. JETP 42, 728 (1976) and references therein, to earlier work.Google Scholar
  21. (19).
    L. Michel, Proc. Vth Int'l. Colloquium on Group Theory Methods in Physics (Academic Press, New York 1977–8). See also references in this paper.Google Scholar
  22. (20).
    J. Patera, P. Winternitz, J. Chem. Phys. 65, 2725 (1976).Google Scholar
  23. (21).
    M. Jaric and J.L. Birman, (these Proceedings and J. Math. Phys. 18, 1456 (1977).Google Scholar
  24. (22).
    A. Agyei and J.L. Birman, phys. stat. solidi (b) 80, 509 (1976); ibid b 82, 565 (1977).Google Scholar
  25. (23).
    A.P. Cracknell, J. Lorenc, J.A. Przystawa, J. Phys.C 9 1731 (1976) and papers referred to there.Google Scholar
  26. (24).
    A.P. Levanyuk, D.G. Sannikov, Usp. F.N. 112, 561 (1974), and F.T.T. 18, 423 (1976); also V. Janovec, V. Dvorak, J. Petzett Czech. J. Phys. B 25, 1362 (1975); P. Toledano, J. Toledano, Phys. Rev. B 14, 3097 (1976).Google Scholar
  27. (25).
    M. Jaric and J.L. Birman, Phys. Rev. B 16, (1977).Google Scholar
  28. (26).
    See ref. 16.Google Scholar
  29. (27).
    Y. Ishibashi, and V. Dvorak, J. Phys. Soc. Japan (1977); W.L. McMillan, Phys. Rev. B 14, 1496 (1976).Google Scholar
  30. (28).
    V.L. Indenbohm, S.A. Pikin, E.B. Laginov, Kristallografiya 21, 1093 (1976).Google Scholar
  31. (29).
    E. Domany, M. Scheck, J.S. Walker, Phys. Rev. Lett. 38, 1148 (1977).Google Scholar
  32. (30).
    A discussion of many applications of Landau theory, and also some microscopic dynamic models and approaches is given in: N. Boccara “Symétries Brisées” (Hermann, Paris (1976)).Google Scholar
  33. (31).
    L. Michel, I. Mozrzymas (Proceedings this Colloquium).Google Scholar
  34. (32).
    See literature citations in refs.2 and G. Tovlovse and P. Pfevty “Introduction au Groupe de Renormalization...”, Presses Universitaire (Grenoble (1976); J. Wiley (1977)).Google Scholar
  35. (33).
    D. Mukhamel, Phys. Rev. Lett. 34, 481 (1975); D. Mukhamel, S. Krinsky, Phys. Rev. B13, 5065, 5078, and 5086 (with P. Bak) (1976); S.A. Brazovskii, I.E. Dzaloshinskii, JETP Lett. 21, 164 (1975), Sov. Phys. JETP 43, 1178 (1976); V.A. Alessandrini, A.P. Cracknell, J.A. Przystawa, Comm. on Phys. 1, 51 (1976); I.E. Dzaloshinsky, JETP (1977).Google Scholar
  36. (34).
    See discussions of “Asymptotic Symmetry” inter alia in A.Z. Patashinsky and V.L. Pokrovski, Sov. Phys. Usp. 20, 30 (1977) [UFN 121, 55 (1977)], in M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974); and especially in E. Brézin, J.C. le Guillov and J. Zinn-Justin, Phys. Rev. B10, 892 (1974).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Joseph L. Birman
    • 1
  1. 1.Physics DepartmentCity College - City University of New YorkNew York, New York

Personalised recommendations