Advertisement

A guide to Lie superalgebras

  • V. Rittenberg
Invited Lectures A. Supersymmetry and Graded Lie Algebras
Part of the Lecture Notes in Physics book series (LNP, volume 79)

Abstract

We give an elementary presentation of the Lie superalgebras, their classification and some properties of their representations. A sketch of the classical Lie supergroup is also given.

Keywords

Irreducible Representation Casimir Operator Cartan Type Jordan Superalgebras Hermitian Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Irving Kaplansky, Lie and Jordan superalgebras, Chicago report 1977.Google Scholar
  2. 2.
    L. Corwin, Y. Ne'eman and S. Sternberg, Rev. Mod. Phys. 47, 573 (1975).Google Scholar
  3. 3.
    V.G. Kac, Communications in Mathematical Phys. 53, 31 (1977).Google Scholar
  4. 4.
    P. Fayet and S. Ferrara, Physics Reports, to be published.Google Scholar
  5. 5.
    S. Ferara, in these proceedings.Google Scholar
  6. 6.
    A. Pais and V. Rittenberg, J. Math. Phys., 16, 2062 (1975), 17, 598 (1976).Google Scholar
  7. 7.
    P.G.O. Freund and I. Kaplansky, J. Math. Phys. 17, 228 (1976); I.Kaplansky, Univ. of Chicago preprint (1976).Google Scholar
  8. 8.
    W. Nahm and M. Scheunert, J. Math. Phys. 17, 868 (1976).Google Scholar
  9. 9.
    N.B. Backhouse, J. Math. Phys. 18, 339 (1977).Google Scholar
  10. 10.
    V.G. Kac, to be published.Google Scholar
  11. 11.
    See for example L. Michel in Group representations in Mathematics and Physics, p.136; Springer; Berlin, Heidelberg (1970).Google Scholar
  12. 12.
    A. Pais, J. Math. Phys. 3, 1135 (1962).Google Scholar
  13. 13.
    Bernice Durand, Institute for Advanced Study, Princeton preprint (1976).Google Scholar
  14. 14.
    W. Nahm, V. Rittenberg and M. Scheunert, Phys. Lett. B61, 383 (1976).Google Scholar
  15. 15.
    M. Scheunert, W. Nahm and V. Rittenberg, J. Math.Phys. 17, 1626, 1640 (1976).Google Scholar
  16. 16.
    V.G. Kac, Functional Analysis and Applications, 9, 91 (1975) (Russian).Google Scholar
  17. 17.
    G. Hochschild, Ill. J. Math.20, 107 (1976). D.Z. Djokovic and G. Hochschild, Ill. J. Math. 20,134(1976);D.Z.Djokovic,J.Pure.Appl.Alg.7,217 (1976).Google Scholar
  18. 18.
    M. Scheunert, W. Nahm and V. Rittenberg, J. Math. Phys. 18, 155 (1977).Google Scholar
  19. 19.
    M. Scheunert, W. Nahm and V. Rittenberg, J. Math. Phys. 18, 146 (1977).Google Scholar
  20. 20.
    G.L. Stavraki, in high energy physics and the theory of elementary particles, Nankova Dumka, Kiev, 1966.Google Scholar
  21. 21.
    V.G. Kac, Some remarks on Lie superalgebras theory (MIT report 1977).Google Scholar
  22. 22.
    B. Kostant, Graded manifolds, graded Lie theory and prequantization, MIT report.Google Scholar
  23. 23.
    F.A. Berezin, Funkc. analiz. 10, 70 (1976) and references therein.Google Scholar
  24. 24.
    V. Rittenberg, M. Scheunert, Bonn-HE-77-13 (1977) preprint.Google Scholar
  25. 25.
    Feza Gursey, Louis Marchildon, Yale preprint 1977.Google Scholar
  26. 26.
    D.A. Leites, Uspechi. Mat. nauk. 30, 156 (1975).Google Scholar
  27. 27.
    V.G. Kac, Characters of typical representations of classical Lie algebras MIT report 1977.Google Scholar
  28. 28.
    V.F. Pakhomov, Math. Notes. Acad. Sciences USSR 16, 624 (1974).Google Scholar
  29. 29.
    I.I. Bernstein and D.A. Leites, Functional Analysis and Applications 11, 55 (1977) (Russian).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • V. Rittenberg
    • 1
  1. 1.Rockefeller UniversityNew York

Personalised recommendations