Perturbation series at large order and vacuum instability

  • J. Zinn - Justin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 77)


Saddle Point Steep Descent Sobolev Inequality Large Order Perturbation Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Sections II, III and IV

  1. C. M. Bender and T. T. Wu, Phys. Rev. Lett. 27, 461 (1971). Phys. Rev. D7, 1620 (1972).Google Scholar
  2. T. Banks, C. M. Bender and T. T. Wu, Phys. Rev. D8, 3346 (1973).Google Scholar
  3. L. N. Lipatov, Zh. Eksp. Teor. Fiz. Red. 25, 116 (1974) and Leningrad Institute of Nuclear Physics Reports 253 and 255 (unpublished).Google Scholar
  4. E. Brezin, J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. D 15, 1544 (1977).Google Scholar

Section V

  1. E. Brezin, J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. D15, 1558 (1977).Google Scholar
  2. E. Brezin, G. Parisi and J. Zinn-Justin, ‘Perturbation Theorv At Large Orders for Potential With Degenerate Minima', Phys. Rev. D16, 408 (1977).Google Scholar

Section VI

  1. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu S. Tyupkin, Phys. Lett. 59B, 85 (1975).Google Scholar
  2. G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).Google Scholar
  3. C. Itkzykson, G. Parisi and J. B. Zuber, Phys. Rev. Lett. 38, 306 (1977) and preprint DPh-T/77/27 Phys.Rev D to be published.Google Scholar
  4. G. Parisi, Phys. Lett. 66B, 167 (1977).Google Scholar

General Remarks

  1. J. J. Loeffel, Proceedings of the 1976 workshop on Padé approximants, D. Bessis, J. Gilewicz and P. Mery ed., CEA publication.Google Scholar
  2. J. C. Le Guillou and J. Zinn-Justin, ‘Critical Exponents For the n-Vector Model from Field Theoretical Methods in 3 Dimensions', Phys. Rev. Lett. 39, 95 (1977).Google Scholar
  3. J. J. Loeffel, A. Martin, B. Simon and A. S. Wightman, Phys. Lett. 308, 1656 (1968).Google Scholar
  4. S. Graffi, V. Grecchi and B. Simon, Phys. Lett. 32B, 631 (1970). In the [ϕ4]3 field theory byGoogle Scholar
  5. J. P. Eckmann, J. Magnen and R. Seneor, Comm. Math. Phys. 39, 251 (1975).Google Scholar
  6. J. S. Feldman and K. Osterwalder, Ann. Phys. (N.Y.) 97, 80 (1976).Google Scholar
  7. J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).Google Scholar
  8. J. L. Gervais and B. Sakita, Phys. Rev. D11, 2943 (1975).Google Scholar
  9. V. E. Korepin, P. P. Kulish and L. D. Faddeev, Zh. Eksp. Teor. Fiz. Pisma Red. 21, 302 (1975), ( J.E.T.P. Lett. 21, 138 (1975)).Google Scholar
  10. N. H. Christ and T. D. Lee, Phys. Rev. D12, 1606 (1975).Google Scholar
  11. Phys. Rep. 23C, 237–374 (1976).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Zinn - Justin
    • 1
    • 2
  1. 1.Service de Physique Théorique CEN SACLAYFrance
  2. 2.Institut de Physique ThéoriqueUniversité de LouvainFrance

Personalised recommendations