Advertisement

Applications of linear fracture mechanics

  • J. Gordon Williams
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 27)

Abstract

The development of linear elastic fracture mechanics is given with a special emphasis on its application to the testing of polymers. The modelling of crazes and plastic zones is discussed and then developed to describe time-dependent crack and craze growth, including crack stability phenomena.

These results are then applied to particular problems, such as environmental stress cracking, fatigue and impact testing.

Keywords

Stress Intensity Factor Crack Length Plane Strain Plastic Zone Plane Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

A

Craze pore area

a

Crack length

B

Plate thickness

Bc

Crack width (for grooved specimens)

b

Craze thickness; position of point load

C

Compliance (Δ/P); constant for craze growth; creep compliance function

c

Specific heat

D

Depth of specimen

d0

Craze parameter

E

Young's modulus

e

Strain

G

Strain energy release rate

GIC

Energy per unit area of crack in mode I

H

Activation energy

K

Stress intensity factor (SIF)

KI

SIF in mode I

KII

SIF in mode II

KIC

SIF in mode I at fracture

Kc1

Plane strain KIC

Kc2

Plane stress KIC

k

Thermal conductivity

L

Half span

l0

Craze parameter

m

Constant; mass of specimen

N

Number of cycles

n

Constant; (d ln e)/(d ln t) in creep

P

Load

R

Stress rate; gas constant

r

Coordinate

rp

Plastic zone size or craze length

rc

π/8K IC 2 /σ c 2

S

Surface length

T

Temperature — absolute degrees

t

Time

U

Energy

u

Displacement or velocity in x direction

V

Velocity

v

Displacement or velocity in y direction

W

Strain energy density

X

a−ξ

x

Coordinate or a/D

Y

Finite width correction factor

y

Coordinate

α

Constant; viscoelastic transition

β

Viscoelastic transition

γ

Viscoelastic transition; surface work

Δ

Deflection

δ

Displacement in craze

δ*

Displacement in craze at crack tip

δc*

Critical value of δ* at fracture

κ

3 − 4 ν for plane strain 3−ν/1+ν for plane stress

λ

Constant

μ

Shear modulus; viscosity

ν

Poisson's ratio

ξ

Working variable — length

ρ

Density

σ

Stress

σc

Craze or cohesive stress

σy

Yield stress

τ

Working variable — time

φ

Stress function; axisymmetric parameter; calibration function

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1).
    Knauss, W. G.: Applied Mechanics Reviews 26, 1 (1973)Google Scholar
  2. 2).
    Gurney, C., Hunt, J.: Proc. R. Soc. A299 (1967)Google Scholar
  3. 3).
    Griffith, A. A.: Phil. Trans. R. Soc. A221, 163 (1920)Google Scholar
  4. 4).
    Rice, J. R., in: Fracture — an advanced treatise. Liebowitz, H. (ed.). New York/London: Academic Press 1963, Vol. II, Chapter 3Google Scholar
  5. 5).
    Williams, M. L.: J. Appl. Mech. 24, (1) (1957)Google Scholar
  6. 6).
    Sih, G. C. (ed.): Methods of analysis and solutions of crack problems. Leyden: Nordhoff International Publishing 1973, Vol. 1Google Scholar
  7. 7).
    Williams, J. G.: Stress analysis of polymers. London: Longmans 1973Google Scholar
  8. 8).
    Marshall, G. P., Coutts, L. H., Williams, J. G.: J. Mat. Sci. 9, 1409 (1974)Google Scholar
  9. 9).
    Tada, H., Paris, P. C., Irwin, G. R.: Stress analysis of cracks handbook. Del Research Corporation 1973Google Scholar
  10. 10).
    Brown, W. F., Srawley, J. F.: ASTM, STP 410 (1966)Google Scholar
  11. 11).
    Rooke, D. P., Cartwright, D. J.: Stress intensity factors. London: HMSO 1976Google Scholar
  12. 12).
    Dugdale, D. S.: J. Mech. Phys. Solids 8, 100 (1960)Google Scholar
  13. 13).
    Barenblatt, G. I.: Adv. Appl. Mechs. 7, 56 (1962)Google Scholar
  14. 14).
    Morgan, G. P., Ward, I. M.: Polymer 18, 87 (1977)Google Scholar
  15. 15).
    Ferguson, R. J., Marshall, G. P., Williams, J. G.: Polymer 14, 451 (1973)Google Scholar
  16. 16).
    Irwin, G. R., Kies, J. A., Smith, H. L.: Proc. ASTM 58, 640 (1958)Google Scholar
  17. 17).
    Parvin, M., Williams, J. G.: Int. J. Fracture 11, (6), 963 (1975)Google Scholar
  18. 18).
    Kambour, R. P., Miller, S.: General Electric Company, CRD Report No. 77 CRD 009, March (1977)Google Scholar
  19. 19).
    Knauss, W. G.: Int. J. Fract. Mech. 6, 7 (1970)Google Scholar
  20. 20).
    Wnuk, M. P., Knauss, W. G.: Int. J. Solids Structures 6, 995 (1970)Google Scholar
  21. 21).
    Kostrov, B. V., Nikitin, L. V.: Archiwum Mechaniki Stosowanej 22, English Version (1970), p. 749Google Scholar
  22. 22).
    Schapery, R. A.: Int. J. Fracture 11, 141 (1975)Google Scholar
  23. 23).
    Schapery, R. A.: Int. J. Fracture 11, 369 (1975)Google Scholar
  24. 24).
    Schapery, R. A.: Int. J. Fracture 11, 549 (1975)Google Scholar
  25. 25).
    Williams, J. G.: Int. J. Fract. Mech. 8, (4), 393 (1972)Google Scholar
  26. 26).
    Gledhill, R. A., Kinloch, A. J.: Polymer 17, 727 (1976)Google Scholar
  27. 27).
    Parvin, M., Williams, J. G.: J. Mat. Sci. 10, 1883 (1975)Google Scholar
  28. 28).
    Mai, Y. M., Atkins, A. G.: J. Mat. Sci. 11, 677 (1976)Google Scholar
  29. 29).
    Broutman, L. J., McGarry, F. J.: J. Appl. Polym. Sci. 9, 589 (1965)Google Scholar
  30. 30).
    Williams, D. P., Evans, A. G.: J. Testing & Evaluation 1, (4), 264 (1973)Google Scholar
  31. 31).
    Mindess, S., Nadeau, J. S., Barrett, J. D.: Wood Sci. 8, (1), 389 (1975)Google Scholar
  32. 32).
    Williams, J. G., Marshall, G. P.: Proc. R. Soc. A342, 55 (1975)Google Scholar
  33. 33).
    McCrum, N. G., Read, B. E., Williams, G.: Anelastic and dielectric effects in polymeric solids. New York: Wiley and Sons 1967Google Scholar
  34. 34).
    Carslaw, H. S., Jaeger, J. G.: Conduction of heat in solids. 2nd edit. Oxford University Press 1959Google Scholar
  35. 35).
    Andrews, E. H., Levy, G. M., Willis, J.: J. Mat. Sci. 8, 1000 (1973)Google Scholar
  36. 36).
    Marshall, G. P., Culver, L. E., Williams, J. G.: Proc. R. Soc. A319, 165 (1970)Google Scholar
  37. 37).
    El-Hakeem, H. M.: Ph. D. Thesis, University of London 1975Google Scholar
  38. 38).
    Graham, I. D., Williams, J. G., Zichy, E. L.: Polymer 17, 439 (1976)Google Scholar
  39. 39).
    Arad, S., Radon, J. C., Culver, L. E.: Polym. Eng. Sci. 12, 193 (1972)Google Scholar
  40. 40).
    Hertzberg, R. W., Nordberg, H., Manson, J. A.: J. Mat. Sci. 5, 521 (1970)Google Scholar
  41. 41).
    Mukherjee, B., Burns, D. J.: Exp. Mechs. 11, 433 (1971)Google Scholar
  42. 42).
    Manson, J. A., Hertzberg, R. W.: Fatigue failure in polymers. CRC Critical Reviews in Macromolecular Science, August 1973Google Scholar
  43. 43).
    Williams, J. G.: J. Mat. Sci., 12, 2525 (1977)Google Scholar
  44. 44).
    Marshall, G. P., Turner, C. E., Williams, J. G.: J. Mat. Sci. 8, 949 (1973)Google Scholar
  45. 45).
    Brown, H. R.: J. Mat. Sci. 8, 941 (1973)Google Scholar
  46. 46).
    Plati, E., Williams, J. G.: Polym. Eng. Sci. 15, (6), 470 (1975)Google Scholar
  47. 47).
    Williams, J. G., Birch, M. W.: Proc. 4th Int. Conf. on Fracture, University of Waterloo, Canada, 1, Part IV, 501 (1977)Google Scholar
  48. 48).
    Newmann, L. V., Williams, J. G.: To be published (1977)Google Scholar
  49. 49).
    Plati, E., Williams, J. G.: Polymer 16, 915 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Gordon Williams
    • 1
  1. 1.Department of Mechanical EngineeringImperial College of Science and TechnologyLondonGreat Britain

Personalised recommendations