The spanwise structure of the bursting phenomenon

  • R. F. Blackwelder
  • H. Eckelmann
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 75)


The streamwise and spanwise velocity components in the wall region of a turbulent channel flow have been studied in order to help clarify the three-dimensional nature of the bursting process. The bursts were detected at y+ ≈ 15 by using short time (VITA.) aver ages of the streamwise velocity component. Conditional averages with a time delay were obtained from wall elements having a spanwise spatial separation. The defect of streamwise momentum, directly before the detection of the burst, is formed by low-speed fluid coming in from the positive and negative spanwise direction. The strength of the defect region slowly increases and possibly forms a low-speed streak as observed in visualization studies. The extent of this motion in the spanwise direction has been studied using space-time correlation techniques.


Streamwise Velocity Streamwise Vortex Turbulent Channel Flow Conditional Average Spanwise Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Willmarth, W. W.: Structure of turbulence in boundary layers. Advances in Applied Mechanics 15, 159–254. Academic Press 1975.Google Scholar
  2. 2.
    Laufer, J.: New trends in experimental turbulence research. Annual Review of Fluid Mechanics 7, 307–326. Annual Reviews, Inc. 1975.CrossRefGoogle Scholar
  3. 3.
    Kovasznay, L. S. G.: The turbulent boundary layer. Annual Review of Fluid Mechanics 2, 95–112. Annual Reviews, Inc. 1970.CrossRefGoogle Scholar
  4. 4.
    Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Rundstadler, P. W.: The structure of turbulent boundary layers. J. Fluid Mech. 30 (1967) 741–773.Google Scholar
  5. 5.
    Corino, E. R., Brodkey, R. S.: A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37 (1969) 1–30.Google Scholar
  6. 6.
    Chen, C.H.P.;Blackwelder, R. F.: Large-scale motion in a turbulent boundary layer: A study using temperature con tamination. To appear in J. Fluid Mech.Google Scholar
  7. 7.
    Blackwelder, R. F.; Kaplan, R. E.: Intermittent structures in turbulent boundary layers. Conf. Proc. NATO-AGARDCP 93 (1972) 5.1–5.7.Google Scholar
  8. 8.
    Blackwelder, R. F.; Kaplan, R. E.: On the wall structure of the turbulent boundary layer.J. Fluid Mech. 76 (1976) 89–112.Google Scholar
  9. 9.
    Wallace, J. M.;Brodkey, R. S.;Eckelmann, H.:Pattern recognized structures in bounded turbulent shear flows. To appear in J. Fluid Mech.Google Scholar
  10. 10.
    Eckelmann, H.;Nychas, S. G.;Wallace, J. M.;Brodkey, R. S.: Vorticity and turbulence production in pattern recognized turbulent flow structures. To appear in Phys.Fluids Supplement.Google Scholar
  11. 11.
    Bakewell, P.; Lumley, J. L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (1967) 1880–1889.CrossRefGoogle Scholar
  12. 12.
    Gupta, A. K.; Laufer, J.; Kaplan, R. E.: Spatial structure in the viscous sublayer. J. Fluid Mech. 50 (1971) 493–512.Google Scholar
  13. 13.
    Eckelmann, H.: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65 (1974) 439–459.Google Scholar
  14. 14.
    Kreplin, H.-P.: Experimentelle Untersuchungen der Längs-schwankungen und der wandparallelen Querschwankungen der Geschwindigkeit in einer turbulenten Kanalströmung.Ph. D. Dissertation. Universität Göttingen 1976.Google Scholar
  15. 15.
    Rao, N. K.; Narasimha, R., Badri Narayanan, M.A.: The “bursting” phenomenon in a turbulent boundary layer. J. Fluid Mech. 48 (1971) 339–352.Google Scholar
  16. 16.
    Gupta, A. K.: Ph.D. Dissertation.University of Southern California 1970.Google Scholar
  17. 17.
    Lee, M. K.; Eckelman, L. D.; Hanratty, T. J.: Identification of turbulent wall eddies through the phase relation of the components of the fluctuating velocity gradient. J. Fluid Mech. 66 (1974) 17–33.Google Scholar
  18. 18.
    Kovasznay, L.S.G.; Kibens, V., Blackwelder, R. F.: Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (1970) 283–325.Google Scholar
  19. 19.
    Qldaker, D. K.;Tiederman, W. G.:Spatial structure of the viscous sublayer in drag-reducing channel flows. To appear in Phys. Fluids Supplement.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. F. Blackwelder
    • 1
  • H. Eckelmann
    • 2
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Lehrstuhl für Angewandte Mechanik und StrömungsphysikGöttingenBRD

Personalised recommendations