Sorption characteristics for gas-liquid contacting in mixing vessels

  • M. Zlokarnik
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 8)


This paper deals with the determination of absorption rates in mixing vessels for pure water (coalescent conditions) and for aqueous salt solutions (noncoalescent conditions). Two new measuring techniques will be described. The (non-steady-state) Pressure Gauge Method can be used for any pure gas and any liquid. The (steady-state) Hydrazine Method allows measurements in water or in aqueous solutions without changing the physical or chemical properties of the system. The results are evaluated according to the theory of similarity, the dimensionless process numbers being formed from intensively formulated process parameters. Two correlations were thus obtained, one valied for a coalescent and one for a noncoalescent system. The following process characteristics will be introduced: hollow stirrers and injectors in a noncoalescent system; propeller stirrer, hollow stirrer, flat blade turbine, and an injector for a coalescent system. In the case of the flat blade turbine, the parameter liquid height/vessel diameter was varied by the ratio 1:3.


Pressure Gauge Sorption Characteristic Fine Bubble Sodium Sulphite Dispersion Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


α [m−1]

gas-liquid interfacial area per unit volume of liquid

c [ppm or kg m−3]

concentration of gas dissolved in the liquid

c [g l−1]

salt concentration of a solution

cs [ppm or kg m−3]

saturation concentration of the gas dissolved in the liquid

Δc [ppm or kg m−3]

concentration difference

Δcm[ppm or kg m−3]

log mean concentration difference

d [mm or m]

stirrer diameter

D [mm or m]

vessel diameter

g [m s−2]

gravitational constant

G [kg s−1]

gas throughput through the interface

h [mm or m]

bottom clearance of the stirrer

H [mm or m]

liquid height in the vessel

H* [mm or m]=(H−h)

liquid height above the stirrer

kL [m s−1]

liquid-phase mass transfer coefficient

kLα [s−1]

(ab)sorption rate coefficient

n [min−1 or s−1]

rotational velocity of the stirrer

P [W or kW]

mixing power in the gas-liquid dispersion

p [bar]

system pressure

q [m3 s−1]

gas throughput

gns [m s−1]

superficial gas velocity

V [1 or m3]

liquid volume

x [−]

mol fraction of the absorbed gas in the gas mixture

Γ [g ions 1−1]

ionic strength of the electrolyte


system temperature

\(\mathbb{D}\)[m2 s−1]

diffusivity of the gas in the liquid

ρ [kg m−3]

liquid density

ν [m2 s−1]

liquid kinematic viscosity

σ [kg s−2]

liquid surface tension


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper, C. M., Fernstrom, G. A., Miller, S. A.: Ind. Eng. Chem. 36, 504 (1944).Google Scholar
  2. 2.
    Foust, H. C., Mack, D. E., Rushton, J. H.: Ind. Eng. Chem. 36, 517 (1944).Google Scholar
  3. 3.
    Vermeulen, T., Williams, G. M., Langlois, G. E.: Chem. Eng. Progress 51, 85-F (1955).Google Scholar
  4. 4. a)
    Calderbank, P. H.: Trans. Instn. Chem. Engrs. 36, 443 (1958)Google Scholar
  5. 4. b)
    Trans. Instn. Chem. Engrs. 37, 173 (1959).Google Scholar
  6. 5.
    Westerterp, K. R., van Dierendonck, L. L., de Kraa, J. A.: Chem. Eng. Sci. 18, 157 (1963).Google Scholar
  7. 6.
    Yoshida, F. et al.: Ind. Eng. Chem. 52, 435 (1960).Google Scholar
  8. 7.
    In: Recent Progress in Surface Science, Vol. 1. D. A. Haydon, p. 111, New York—London: Academic Press 1964.Google Scholar
  9. 8.
    Marucci, G., Nicodemo, L.: Chem. Eng. Sci. 22, 1257 (1967).Google Scholar
  10. 9.
    Lessard, R. R., Zieminski, S. A.: Ind. Eng. Chem. Fundam. 10, 260 (1971).Google Scholar
  11. 10.
    Robinson, C. W., Wilke, C. R.: Biotechn. and Bioengng. 15, 755 (1973).Google Scholar
  12. 11.
    Robinson, C. W., Wilke, C. R.: AIChE Journal 20, 285 (1974).Google Scholar
  13. 12.
    Yagi, H., Yoshida, F.: Ind. Eng. Chem., Process Des. Dev. 14, 488 (1975).Google Scholar
  14. 13.
    Yoshida, F., Miura, Y.: I & EC Process Des. Dev. 2, 263 (1963).Google Scholar
  15. 14.
    Linek, V.: Chem. Eng. Sci. 21, 777 (1966).Google Scholar
  16. 15. a)
    Zlokarnik, M.: Chem. Ing. Techn. 38, 357 (1966)Google Scholar
  17. 15. b)
    Chem. Ing. Techn. 38, 717 (1966).Google Scholar
  18. 16.
    Zlokarnik, M., Judat, H.: Chem. Ing. Techn. 39, 1163 (1967).Google Scholar
  19. 17.
    Zlokarnik, M.: Chem. Ing. Techn. 42, 1310 (1970).Google Scholar
  20. 18.
    Zlokarnik, M.: Theory of similarity in process engineering (in German), p. 84, Bayer AG, Leverkusen 1974.Google Scholar
  21. 19.
    Zlokarnik, M.: Chem. Ing. Techn. 45, 689 (1973).Google Scholar
  22. 20.
    Zlokarnik, M.: Chem. Ing. Techn. 47, 281 (1975).Google Scholar
  23. 21.
    Jackson, M. L.: A.E.Ch.E. Journal 10, 836 (1964).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. Zlokarnik
    • 1
  1. 1.Engineering Department of Applied Physics, Bayer AGLeverkusenWest Germany

Personalised recommendations