Advertisement

Wave transport in stratified, rotating fluids

  • M. E. McIntyre
VIII. Waves
Part of the Lecture Notes in Physics book series (LNP, volume 71)

Abstract

Momentum and energy transport by buoyancy-Coriolis waves is illustrated by means of a simple model example. The need for careful consideration of a complete problem for mean-flow evolution is emphasised, especially when moving media are involved. Then a recent generalisation of the wave-action and pseudomomentum concepts is introduced, and used to exhibit in a very general way the roles of wave dissipation, forcing, or transience in the mean flow problem, for a certain class of ‘nearly-unidirectional’ mean flows. This class includes differentially-rotating stellar interiors, which could well be systematically changed by wave transport of angular momentum. Similar results hold for MHD and self-gravitating fluids. Finally the physical distinction between momentum and pseudomomentum is discussed.

Keywords

Reynolds Stress Coriolis Force Wave Property Secondary Circulation Radiation Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindzen,R.S. 1973 Boundary-layer Meteorol. 4, 327–43Google Scholar
  2. 2.
    Holton,J.R. 1975 The dynamic meteorology of the stratosphere and mesosphere. Boston, Amer.Met. Soc., 218pp.Google Scholar
  3. 3.
    Fels,S.B. & Lindzen,R.S. 1974 Geophys. Fluid Dyn. 6, 149–91Google Scholar
  4. 4.
    P1umb,R.A. 1975 Q.J. Roy. Meteorol. Soc. 101, 763–76CrossRefGoogle Scholar
  5. 5.
    Spiegel,E.A., Gough, D.O., personal communicationGoogle Scholar
  6. 6.
    E.g. Sakurai,T. 1976 Astrophys.& Space Sci. 141, 15–25Google Scholar
  7. 7.
    Holton,J.R. & Mass,C. 1976 J. Atmos. Sci. 33, 2218–25CrossRefGoogle Scholar
  8. 8.
    E.g. Grimshaw,R. 1975 J. Atmos. Sci. 32, 1779–93CrossRefGoogle Scholar
  9. 9.
    Eliassen,A. 1952 Astrophysica Norvegica 5, 19–60Google Scholar
  10. l0.
    Phillips,N.A. 1954 Tellus 6, 273–86Google Scholar
  11. 11.
    Matsuno,T. 1971 J. Atmos. Sci. 28, 1479–94CrossRefGoogle Scholar
  12. 12.
    Uryu,M. 1974 J.Meteorol.Soc.Japan 52, 481–90Google Scholar
  13. 13.
    Grimshaw,R. 1975 J.Fluid Mech. 71, 497–512Google Scholar
  14. 14.
    Landau, L.D. & Lifshitz,E.M. 1975 The classical theory of fields, 4th English edition. Pergamon, 402 pp. See also Dougherty,J.P. 1970 J. Plasma Phys. 4, 761–85Google Scholar
  15. 15.
    Eckart,C. 1963 Phys.Fluids 6, 1037–41CrossRefGoogle Scholar
  16. 16.
    Hayes,W.D. 1970 Proc.Roy.Soc.A 320, 187–208Google Scholar
  17. 17.
    Dewar,R.L. 1970 Phys.Fluids 13, 2710–20CrossRefGoogle Scholar
  18. 18.
    Bretherton,F.P. 1971 Lectures in Appl. Math. 13, 61–102 (Amer. Math. Soc.)Google Scholar
  19. 19.
    Eliassen, A. & Palm,E. 1961 Geofys. Publ., 22#3, 1–23Google Scholar
  20. 20.
    Charney,J.G. & Drazin,P.G. 1961 J. Geophys. Res. 66, 83–109Google Scholar
  21. 21.
    Moffatt, H.K. 1977 Magnetic field generation. Cambridge Univ.Press (to appear)Google Scholar
  22. 22.
    Andrews, D.G. & McIntyre,M.E. 1977 Submitted to J.Fluid Mech.Google Scholar
  23. 23.
    Andrews,D.G. & McIntyre,M.E. 1976 J. Atmos. Sci. 33, 2031–48CrossRefGoogle Scholar
  24. 24.
    Boyd,J. 1976 J. Atmos. Sci. 33, 2285–91CrossRefGoogle Scholar
  25. 25.
    Bretherton, F.P. 1977 Submitted to J.Fluid Mech.Google Scholar
  26. 26.
    Bretherton,F.P. 1969 Q.J. Roy. Meteorol. Soc. 95, 213–43Google Scholar
  27. 27.
    Lorenz,E.N. 1955 Tellus 7, 157–67Google Scholar
  28. 28.
    Bretherton,F.P. & Garrett.C.J.R. 1968 Proc.Roy.Soc.A 302, 529–54Google Scholar
  29. 29.
    Whitham, G.B. 1974 Linear and nonlinear waves. Wiley.Google Scholar
  30. 30.
    Bretherton,F.P. 1970 J.Fluid Mech 44, 19–31Google Scholar
  31. 31.
    Andrews, D.G., personal communicationGoogle Scholar
  32. 32.
    Andrews, D.G. & McIntyre, M.E. 1977 To appear in J. Atmos. Sci.Google Scholar
  33. 33.
    Eliassen, A. 1968 Geofys. Publ. 27#6, 1–15Google Scholar
  34. 34.
    Dickinson,R.E. 1969 J. Atmos. Sci. 26, 73–81CrossRefGoogle Scholar
  35. 35.
    Uryu,M. 1973 J.Meteorol.Soc.Japan 51, 86–92Google Scholar
  36. 36.
    Rayleigh,Lord 1905 Phil. Mag. 10, 364–74. (Sci. Papers, 5, 262–71)Google Scholar
  37. 37.
    Brillouin,L. 1925 Annales de Physique 4, 528–86Google Scholar
  38. 38.
    Peierls,R. 1976 Proc.Roy.Soc.A 347, 475–91Google Scholar
  39. 39.
    Gordon,J.P. 1973 Phys.Rev.A 8, 14–21CrossRefGoogle Scholar
  40. 40.
    McIntyre,M.E. 1973 J.Fluid Mech 60, 801–11Google Scholar
  41. 41.
    Robinson,F.N.H. 1975 Phys.Reports (Sec.C.of Physics Letters) 16, 314–54Google Scholar
  42. 42.
    Penfield,P. & Haus,H.A. 1966 Phys,Fluids 9, 1195–1204Google Scholar
  43. 43.
    Brillouin,L. 1936 Revue d Acoustique 5, 99–111Google Scholar
  44. 44.
    Rooney,J.A. & Nyborg, W.L. 1972 Amer.J. Phys. 40, 1825–30Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. E. McIntyre
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeUSA

Personalised recommendations