Numerical methods in convection theory

  • N. O. Weiss
IV. Numerical Solutions
Part of the Lecture Notes in Physics book series (LNP, volume 71)


Two and three-dimensional computations have enlarged our understanding of nonlinear convection, particularly in Boussinesq fluids. However, we cannot adequately predict the relationship between convective heat transport and the superadiabatic temperature gradient. Nor is there any indication of a preferred length scale, other than the depth of the convecting layer, in a compressible fluid.


Nusselt Number Rayleigh Number Vortex Ring Solar Phys Convection Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böhm, K.-H., 1967. Aerodynamic phenomena in stellar atmospheres (IAU Symp. No. 28) ed. R. N. Thomas, p. 366, Academic Press, London.Google Scholar
  2. Böhm, K.-H., 1975. Physique des mouvements dans les atmosphères stellaires, ed. R. Cayrel and M. Steinberg, p. 57, CNRS, Paris.Google Scholar
  3. Brown, W., 1973. J. Fluid Mech. 60, 539.Google Scholar
  4. Busse, F. H., 1967. J. Math. Phys. 46, 140.Google Scholar
  5. Busse, F. H., 1969. J. Fluid Mech. 37, 457.Google Scholar
  6. Busse, F. H., 1972. J. Fluid Mech. 52, 97.Google Scholar
  7. Busse, F. H. and Whitehead, J. A., 1974. J. Fluid Mech. 66, 67.Google Scholar
  8. Clever, R. M. and Busse, F. H., 1974. J. Fluid Mech. 65, 625.Google Scholar
  9. Cocke, W. J., 1967. Astrophys. J. 150, 1041.CrossRefGoogle Scholar
  10. Deubner, F. L., 1976. Astr. Astrophys. 47, 475.Google Scholar
  11. Fromm, J. E., 1965. Phys. Fluids 8, 1757.CrossRefGoogle Scholar
  12. Gough, D. O., 1969. J. Atmos. Sci. 26, 448.CrossRefGoogle Scholar
  13. Gough, D. O., 1976. Trans. IAU 16A Part 2, 169.Google Scholar
  14. Gough, D. O., Moore, D. R., Spiegel, E. A. and Weiss, N. O., 1976. Astrophys. J. 206, 536.CrossRefGoogle Scholar
  15. Gough, D. O., Spiegel, E. A. and Toomre, J., 1975. J. Fluid Mech. 68, 695.Google Scholar
  16. Gough, D. O. and Weiss, N. O., 1976. Mon. Not. R. Astr. Soc. 176, 589.Google Scholar
  17. Graham, E., 1975. J. Fluid Mech. 70, 689.Google Scholar
  18. Graham, E. and Moore, D. R. 1977.In preparation.Google Scholar
  19. Howard, L. N., 1963. J. Fluid Mech. 17, 405.Google Scholar
  20. Jones, C. A., Moore, D. R. and Weiss, N. O., 1976. J. Fluid Mech. 73, 353.Google Scholar
  21. Jones, C. A. and Moore, D. R., 1977. In preparation.Google Scholar
  22. Kirk, J. G. and Livingston, W., 1968. Solar Phys. 3, 510.CrossRefGoogle Scholar
  23. Krishnamurti, R., 1970a. J. Fluid Mech. 42, 295.Google Scholar
  24. Krishnamurti, R., 1970b. J. Fluid Mech. 42, 309.Google Scholar
  25. Krishnamurti, R., 1973. J. Fluid Mech. 60, 285.Google Scholar
  26. Latour, J., Spiegel, E. A., Toomre, J. and Zahn, J.-P., 1976. Astrophys. J. 207, 233.CrossRefGoogle Scholar
  27. Lipps, F. B., 1976. J. Fluid Mech. 75, 113.Google Scholar
  28. Moore, D. R. and Weiss, N. O., 1973. J. Fluid Mech. 58, 289.Google Scholar
  29. Musman, S., 1972. Solar Phys. 26, 290.CrossRefGoogle Scholar
  30. Plows, W., 1968. Phys. Fluids 11, 1593.CrossRefGoogle Scholar
  31. Rossby, H. T., 1969. J. Fluid Mech. 36, 309.Google Scholar
  32. Schneck, P. and Veronis, G., 1967. Phys. Fluids 10, 927.CrossRefGoogle Scholar
  33. Schwarzschild, M., 1961. Astrophys. J. 134, 1.CrossRefGoogle Scholar
  34. Spiegel, E. A., 1965. Astrophys. J. 141, 1068.CrossRefGoogle Scholar
  35. Spiegel, E. A., 1971a. Comm. Astrophys. Space Phys. 3, 53.Google Scholar
  36. Spiegel, E. A., 1971b. Ann. Rev. Astr. Astrophys. 9, 323.CrossRefGoogle Scholar
  37. Spiegel, E. A., 1972. Ann. Rev. Astr. Astrophys. 10, 261.CrossRefGoogle Scholar
  38. Straus, J., 1972. J. Fluid Mech. 56, 353.Google Scholar
  39. Toomre, J., Gough, D. O. and Spiegel, E. A., 1977. J. Fluid Mech. 79, 1.Google Scholar
  40. Toomre, J., Zahn, J.-P., Latour, J. and Spiegel, E. A., 1976. Astrophys. J. 207, 545.CrossRefGoogle Scholar
  41. Vandakurov, Yu. V., 1975a. Solar Phys. 40, 3.CrossRefGoogle Scholar
  42. Vandakurov, Yu. V., 1975b. Solar Phys. 45, 501.CrossRefGoogle Scholar
  43. Veltishchev, N. F. and Zelnin, A. A., 1975. J. Fluid Mech. 68, 353.Google Scholar
  44. Veronis, G., 1966. J. Fluid Mech. 26, 49.Google Scholar
  45. Vickers, G. T., 1971. Astrophys. J. 163, 363.CrossRefGoogle Scholar
  46. Weiss, N. O., 1976. Basic mechanisms of solar activity (IAU Symp. No. 71), ed. V. Bumba and J. Kleczek, p.229, Reidel, Dordrecht.Google Scholar
  47. Widnall, S., 1975. Ann. Rev. Fluid Mech. 7, 141.CrossRefGoogle Scholar
  48. Widnall, S. and Sullivan, J., 1973. Proc. Roy. Soc. A 332, 335.Google Scholar
  49. Willis, G. E. and Deardorff, J. W., 1967. Phys. Fluids 10, 931.CrossRefGoogle Scholar
  50. Willis, G. E. and Deardorff, J. W., 1970. J. Fluid Mech. 44, 661.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • N. O. Weiss
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridge

Personalised recommendations