Advertisement

The current state of stellar mixing-length theory

  • Douglas Gough
I. Mixing-Length Theory
Part of the Lecture Notes in Physics book series (LNP, volume 71)

Abstract

The basic assumptions of the mixing-length formalism are described, and the theory is developed with a view to representing convection in stars. Directions in which the results might be improved and extended are indicated.

Keywords

Heat Flux Reynolds Stress Convection Zone Fluid Element Stellar Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, L. and Spiegel, E.A., 1975, J. Atmos. Sci., 32, 1909CrossRefGoogle Scholar
  2. Barker, J.A. and Henderson, D., 1976, Rev. Mod. Phys., 48, 587CrossRefGoogle Scholar
  3. Biermann, L., 1932, Zs f. Ap, 5, 117Google Scholar
  4. Biermann, L., 1937, A.N., 264, 361Google Scholar
  5. Biermann, L., 1943, Zs f. Ap, 22, 244Google Scholar
  6. Biermann, L., 1948a, Zs f. Ap, 25, 135Google Scholar
  7. Biermann, L., 1948b, FIAT Review of German Science (Astr. Ap Cosm.), 161Google Scholar
  8. Böhm, K.-H. & Stückl, E., 1967, Zs f. Ap, 66, 487Google Scholar
  9. Böhm-Vitense, E., 1958, Zs f. Ap, 46, 108Google Scholar
  10. Boussinesq, J., 1877, Mém. div. savants Acad. Sci. Inst. France, 23, No 1Google Scholar
  11. Boussinesq, J., 1903, Théorie analytique de la chaleur, Tome II (Paris, Gauthier — Villars)Google Scholar
  12. Chandrasekhar, S., 1961, Hydrodynamic and hydromagnetic stability, (Oxford Univ. Press)Google Scholar
  13. Dearborn, D.S.P. and Eggleton, P.P., 1976, JRAS, 17, 448Google Scholar
  14. Faulkner, J., Griffiths, K. and Hoyle, F., 1965, MNRAS, 129, 363Google Scholar
  15. Gabriel, M., Scuflaire, R., Noels, A. and Boury, A., 1974, Bull. Acad. roy Belgique, Cl. Sci, 60 Google Scholar
  16. Gough, D.O., 1969, J. Atmos. Sci., 26, 448CrossRefGoogle Scholar
  17. Gough, D.O., 1977, Ap J., in pressGoogle Scholar
  18. Gough, D.O. and Weiss, N.O., 1976, MNRAS, 176, 589Google Scholar
  19. Graham, E., 1975, JFM, 70, 689Google Scholar
  20. Henyey, L., Vardya, M.S. and Bodenheimer, P., 1965, Ap J., 142, 841CrossRefGoogle Scholar
  21. Hofmeister, E. & Weigert, A., 1964, Zs f. Ap, 59, 119Google Scholar
  22. Kraichnan, R.H., 1962, Phys. Fluids, 5, 1374CrossRefGoogle Scholar
  23. Latour, J., Spiegel, E.A., Toomre, J. and Zahn, J.-P., 1976a, Ap J., 207, 233CrossRefGoogle Scholar
  24. Launder, B.E. and Spalding, D.B., 1972, Mathematical models of turbulence (Academic Press)Google Scholar
  25. Maeder, A., 1975, Astr. and Ap, 40, 303Google Scholar
  26. Malkus, W.V.R., 1964, Geophys. Fluid Dynamics (Woods Hole Oceanographic Institution) 1, 1Google Scholar
  27. Monaghan, J.J., 1970, MNRAS, 148, 353Google Scholar
  28. Nordlund, Å., 1974, Astr. and Ap, 32, 407Google Scholar
  29. Nordlund, Å., 1976, Astr. and AR, 50, 23Google Scholar
  30. Ogura, Y. and Phillips, N.A., 1962, J. Atmos. Sci., 19, 173CrossRefGoogle Scholar
  31. Öpik, E.J., 1938, Publ. Obs. astr. Univ. Tartu, 30, No 3Google Scholar
  32. Öpik, E.J., 1950, MNRAS, 110, 559Google Scholar
  33. Prandtl, L., 1925, Zs f. angew. Math. Mech., 5, 136Google Scholar
  34. Prandtl, L., 1926, Verhandl. II intern. Kongr. tech. Mech., Z:urich, p 62Google Scholar
  35. Prandtl, L., 1932, Beitr. z. Phys. d. freien Atm., 19, 188Google Scholar
  36. Prandtl, L., 1952, Essentials of Fluid dynamics, (London, Blackie)Google Scholar
  37. Rossby, H.T., 1969, JFM, 36, 309Google Scholar
  38. Scalo, J.M. and Ulrich, R.K., 270 1973, Ap J., 183, 151CrossRefGoogle Scholar
  39. Schmidt, W. 1917, Sitzungsber. (Kais. Ak. d. Wiss. Wein), Abt IIa, 126, 757Google Scholar
  40. Shaviv, G. and Salpeter, E.E., 1973, Ap J., 184, 191CrossRefGoogle Scholar
  41. Schwarzschild, M., 1961, Ap J., 134, 1CrossRefGoogle Scholar
  42. Siedéntopf, H., 1933a, A.N., 247, 297Google Scholar
  43. Siedentopf, H., 1933b, A.N., 249, 53Google Scholar
  44. Siedentopf, H., 1935, A.N., 255, 157Google Scholar
  45. Sommerville, R.C. and Lipps, F.B., 1973, J. Atmos. Sci., 30, 590CrossRefGoogle Scholar
  46. Spiegel, E.A. 1963, Ap J., 138, 216.CrossRefGoogle Scholar
  47. Spiegel, E.A., 1971, Ann. Rev. A. Ap, 9, 323Google Scholar
  48. Spiegel, E.A. and Veronis, G., 1960, Ap J., 131, 442 (correction: 135, 655)CrossRefGoogle Scholar
  49. Spruit, H.C., 1974, Solar Phys., 34, 277CrossRefGoogle Scholar
  50. Stellingwerf, R.F., 1976, Ap J., 206, 543CrossRefGoogle Scholar
  51. Taylor, G.I., 1915, Phil. Trans., A, 215, 1Google Scholar
  52. Taylor, G.I., 1932, Proc. Roy. Soc., A, 135, 685Google Scholar
  53. Toomre, J., Zahn, J.-P., Latour, J. and Spiegel, E.A., 1976b, Ap J., 207, 545CrossRefGoogle Scholar
  54. Travis, L.D. and Matsushima, S., 1971, Scientific Report No 024, (Penn. State Univ., Astr. Dept)Google Scholar
  55. Travis, L.D. and Matsushima, S., 1973, Ap J., 180, 975CrossRefGoogle Scholar
  56. Turner, J.S., 1973, Buoyancy effects in fluids, (Cambridge Univ. Press)Google Scholar
  57. Ulrich, R.K., 1970a, Ap Sp. Sci., 7, 71Google Scholar
  58. Ulrich, R.K., 1970b, Ap Sp. Sci., 7, 183CrossRefGoogle Scholar
  59. Ulrich, R.K., 1976, Ap J., 207, 564CrossRefGoogle Scholar
  60. Unno, W., 1967, Publ. Astr. Soc. Japan, 19, 140Google Scholar
  61. Unno, W. and Spiegel, E.A., 1966, Publ. Astr. Soc. Japan, 18, 85Google Scholar
  62. Van der Borght, R., 1975, MNRAS, 173, 85Google Scholar
  63. Vitense, E., 1953, Zs f. Ap, 32, 135Google Scholar
  64. von Kármán, T., 1930, Proc. III inter. Congr. App. Mech., Stockholm, 1, 85Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Douglas Gough
    • 1
  1. 1.Institute of Astronomy & Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridge

Personalised recommendations