Wave propagation in a randomly inhomogeneous ocean

  • Werner Kohler
  • George C. Papanicolaou
Part of the Lecture Notes in Physics book series (LNP, volume 70)


Mode Amplitude Radiation Mode Radiation Loss Diffusion Approximation Mode Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Burridge and H. Weinberg, Chapter III, this volume.Google Scholar
  2. [2]
    C. Wilcox, Spectral analysis of the Laplacian with a discontinuous coefficient in a half space and the associated eigenfunction expansion. Also, Transient acoustic wave propagation in a symmetric Epstein duct. University of Utah reports, January 1973 and May 1974.Google Scholar
  3. [3]
    W. H. Munk, Sound channel in an exponentially stratified ocean, with application to SOFAR, J. Acoust. Soc. Am. 55, (1974), p. 220.Google Scholar
  4. [4]
    F. D. Tappert, Chapter V, this volume.Google Scholar
  5. [5]
    U. Frisch, Wave propagation in random media, Probabilistic methods in Applied Math., Vol. 1, Academic Press, New York, 1968, pp. 75–198.Google Scholar
  6. [6]
    R. Kubo, Stochastic Liouville equation, J. Math. Phys. 4 (1963), p. 174.Google Scholar
  7. [7]
    J. B. Keller, Wave propagation in random media, in Stochastic Processes in Mathematical Physics and Engineering, R. Bellman, editor, Proc. Symp. Appl. Math. XVI (1964), p. 145.Google Scholar
  8. [8]
    M. Lax, Classical noise IV. Langevin methods, Rev. Modern Phys. 38 (1966), p. 561.Google Scholar
  9. [9]
    F. Haake, Statistical treatment of open systems by Generalized Master Equations, Springer Tracts in Modern Physics, No. 66, Berlin, Heidelberg, New York, 1973.Google Scholar
  10. [10]
    G. C. Papanicolaou and W. Kohler, Asymptotic theory of mixing stochastic differential equations, Commun. Pure Appl. Math., 27 (1974), p. 641Google Scholar
  11. [11]
    R. L. Stratonovich, Topics in the theory of random noise, Vol. 1 and 2, English transl., Gordon and Breach, New York, 1963.Google Scholar
  12. [12]
    R. Z. Khasminskii, A limit theorem for the solution of differential equations with random right-hand sides, Theor. Probability Appl. 11 (1966), p. 390.Google Scholar
  13. [13]
    V. Volterra, Theory of Functionals, Dover, New York, 1959.Google Scholar
  14. [14]
    G. C. Papanicolaou and R. Burridge, Transport equations for the Stokes parameters from Maxwell's equations in a random medium, J. Math. Phys. 16 (1975), p. 2074.Google Scholar
  15. [15]
    I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer Verlag, Berlin, Heidelberg, New York, 1972.Google Scholar
  16. [16]
    D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York, 1974.Google Scholar
  17. [17]
    G. C. Papanicolaou and W. Kohler, Asymptotic analysis of deterministic and stochastic equations with rapidly varying components, Commun. Math. Phys., 45 (1975), p. 217.Google Scholar
  18. [18]
    S. D. Personick, Time dispersion in dielectric waveguides, Bell Syst. Tech. J., 50 (1971), p. 843.Google Scholar
  19. [19]
    D. Marcuse, Pulse propagation in multimode dielectric waveguides, Bell Syst. Tech. J., 51 (1972), p. 1199.Google Scholar
  20. [20]
    T. G. Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Funct. Analysis, 12 (1973), p. 55.Google Scholar
  21. [21]
    G. C. Papanicolaou, Probabilistic problems and methods in singular perturbation, Rocky Mountain Math. J., 6 (1976), p. 653.Google Scholar
  22. [22]
    L. Chernov, Wave propagation in random media, McGraw-Hill, New York, 1960.Google Scholar
  23. [23]
    H. Weinberg and R. Mellen, Ray diffusion in randomly inhomogeneous ocean, TM No. PA4-63-74, NUSC, New London Laboratory.Google Scholar
  24. [24]
    R. H. Mellen D.G. Browning and J. M. Ross, Attenuation in randomly inhomogeneous sound chanells, J. Acoust. Soc. Am. 56 (1974), p. 80.Google Scholar
  25. [25]
    D. Gloge, Optical power flow in multimode fibers, Bell Syst. Tech. J., 1 (1972) p. 1767.Google Scholar
  26. [26]
    D. Marcuse, Light Transmission Optics, Van Nostrand Reinhold, Princeton, New Jersey, 1972.Google Scholar
  27. [27]
    L.Dozier, Statistics of Normal Mode Amplitudes in a Random Ocean, Dissertation, N.Y.U., 1977Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Werner Kohler
    • 1
  • George C. Papanicolaou
    • 2
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksbourg
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew York

Personalised recommendations