Horizontal rays and vertical modes

  • Robert Burridge
  • Henry Weinberg
Part of the Lecture Notes in Physics book series (LNP, volume 70)


Sound Speed Eikonal Equation Stratify Medium Acoustic Propagation Uniform Asymptotic Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. L. Pekeris, Theory of propagation of explosive sound in shallow water, Geol. Soc. Amer. Mem. 27 (1948).Google Scholar
  2. [2]
    J. L. Worzel and M. Ewing, Explosive sounds in shallow water, Geol. Soc. Amer. Mem. 27 (1948).Google Scholar
  3. [3]
    I. Tolstoy, Shallow water test of the theory of layered wave guides, J. Acoust. Soc. Amer. 30 384 (1958).Google Scholar
  4. [4]
    A. D. Pierce, Extension of the method of normal modes to sound propagation in an almost stratified medium, J. Acoust. Soc. Amer. 37 (1965).Google Scholar
  5. [5]
    J. B. Keller, Surface waves on water of nonuniform depth, J. Fluid Mech. 4 607 (1958).Google Scholar
  6. [6]
    M. C. Shen and J. B. Keller, Ray method for nonlinear wave propagation in a rotating fluid of variable depth, Phys. Fluids 16 1565 (1973).Google Scholar
  7. [7]
    B. Rulf, An asymptotic theory of guided waves, J. Engr. Math. 4 261 (1970).Google Scholar
  8. [8]
    F. P. Bretherton, Propagation in slowly varying waveguides, Proc. Roy. Soc. A302 555 (1968).Google Scholar
  9. [9]
    J. B. Keller, R. M. Lewis and B. D. Seckler, Asymptotic solutions of some diffraction problems, Comm. Pure Appl. Math. 9 207 (1956).Google Scholar
  10. [10]
    F. C. Karal and J. B. Keller,Elastic wave propagation in homogeneous and inhomogeneous media, J. Acoust. Soc. Amer. 31 694 (1959).Google Scholar
  11. [11]
    H. Weinberg and R. Burridge, Horizontal ray theory for ocean acoustics. J. Acoust. Soc. Amer. 55 63 (1974).Google Scholar
  12. [12]
    D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19 215 (1966).Google Scholar
  13. [13]
    V. M. Babich, The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium, Z. Vycisl. Mat. i Mat. Fiz 5 969 (1965).Google Scholar
  14. [14]
    E. Zauderer, Uniform asymptotic solutions of the reduced wave equation, J. Math. Anal. Appl. 30 157 (1970).Google Scholar
  15. [15]
    J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover Publications, New York, (1952).Google Scholar
  16. [16]
    P. R. Garabedian, Partial Differential Equations, Wiley, New York (1964), p. 27.Google Scholar
  17. [17]
    W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical Physics, Chelsea, New York (1954) p. 22.Google Scholar
  18. [18]
    H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge University Press (1956), p. 511.Google Scholar
  19. [19]
    F. Tappert, The parabolic equation method in underwater acoustics, This volume.Google Scholar
  20. [20]
    E. Zauderer, On a modification of Hadamard's method for obtaining fundamental solutions for hyperbolic and parabolic equations, J. Inst. Math. Applics. 8 8 (1971).Google Scholar
  21. [21]
    R. A. Handelsman and N. Bleistein, Uniform asymptotic expansions of integrals that arise in the analysis of precursors, Arch. Rat. Mech. Anal. 3 267 (1969).Google Scholar
  22. [22]
    V. Cerveny and R. Ravindra, Theory of Seismic Head Waves, University of Toronto Press (1971).Google Scholar
  23. [23]
    C. C. Leroy, Development of simple equations for accurate and more realistic calculation of the speed of sound in sea water, J. Acoust. Soc. Amer. 46 216 (1969).Google Scholar
  24. [24]
    R. H. Adlington,Acoustic reflection losses at the sea surface measured with explosive sources, J. Acoust. Soc. Amer. 35 1834 (1963).Google Scholar
  25. [25]
    H. W. Marsh, T. G. Bell, and C. W. Horton, Reflection and scattering of sound by the sea bottom, in Proceedings of the 68th meeting of Acoust. Soc. Amer. Oct. 21–24, 1964, Austin, Texas (Jan. 1965).Google Scholar
  26. [26]
    R. J. Urick, Principles of Underwater Sound for Engineers (McGraw-Hill Book Company, New York, 1967), p. 118.Google Scholar
  27. [27]
    W. H. Thorp, Analytic description of the low-frequency attenuation coefficient, Letter to Editor, J. Acoust. Soc. Amer. 42 270 (1967).Google Scholar
  28. [28]
    W. H. Thorp, Deep ocean sound attenuation in the sub-and low-kilocycle-per-second region, J. Acoust. Soc. Amer. 38 648 (1965).Google Scholar
  29. [29]
    R. D. Sussman, R. D. MacDonald, and W. G. Kanabis, Frequency-attenuation studies, Under-Water Sound Laboratory Tech. Memo. No. 911-16-65 (oct. 1964).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Robert Burridge
    • 1
  • Henry Weinberg
    • 2
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew York
  2. 2.New London LaboratoryNaval Underwater Systems CenterNew London

Personalised recommendations