Survey of wave propagation and underwater acoustics

  • Joseph B. Keller
Part of the Lecture Notes in Physics book series (LNP, volume 70)


Normal Mode Sound Speed Random Medium Sound Field Forward Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. L. Pekeris, Theory of propagation of explosive sound in shallow water, Geol. Soc. Am. Mem. 27 (1948).Google Scholar
  2. [2]
    L. Brekovskikh, Waves in layered media, Academic Press, New York, 1960Google Scholar
  3. [3]
    D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19, 215–250 (1966).Google Scholar
  4. [4]
    Yu. A. Kravtsov, A modification of the geometrical optics method, Radiofizika, 7, 664–673 (1964).Google Scholar
  5. [5]
    J. B. Keller, Surface waves on water of nonuniform depth, J. Fluid Mech. 4, 607 (1958).Google Scholar
  6. [6]
    A. D. Pierce, Extension of the method of normal modes to sound propagation in an almost stratified medium, J. Acoust. Soc. Am. 37, (1965).Google Scholar
  7. [7]
    H. Weinberg and R. Burridge, Horizontal ray theory for ocean acoustics, J. Acoust. Soc. Am. 55, 63 (1974).Google Scholar
  8. [8]
    M. Leontovich and V. A. Fock, J. Phys. USSR 10, 13–24 (1946).Google Scholar
  9. [9]
    F. D. Tappert and R. H. Hardin, in “A synopsis of the AESD workshop on acoustic modeling by non ray tracing techniques”, C. W. Spofford, AESD TN-73-05, Arlington, VA. (1973).Google Scholar
  10. [10]
    L. A. Chernov, Wave propagation in a random medium, McGraw-Hill, New York,1960.Google Scholar
  11. [11]
    V. I. Tatarski, Wave propagation in a turbulent medium, McGraw-Hill, New York, 1960; The effects of turbulent atmospheres on wave propagation, Natl. Tech. Inf. Services, Springfield, Va. (1971).Google Scholar
  12. [12]
    B. Y. Klyatskin, Statistical description of dynamical systems with fluctuating parameters, Izdat. “Nauka”, Moscow, 1975.Google Scholar
  13. [13]
    J. B. Keller, Wave propagation in a random medium, Proc. Symp. Appl. Math. 13, 227–246 (1962); Stochastic equations and wave propagation in random media, ibid. 16, 145–170 (1964); A survey of the theory of wave propagation in continuous random media, Symp. on Turbulence of Fluids and Plasmas, Poly. Inst. Brooklyn, 131–142 (1968).Google Scholar
  14. [14]
    U. Frisch, Wave propagation in random media, 76–198, in Probabilistic Methods in Applied Math., Vol 1, A. Bharucha-Reid, ed., Academic Press, New York,1968.Google Scholar
  15. [15]
    Yu. N. Barahanenkov, Yu. A. Kravtsov, S. N. Rytov, and V. I. Tatarski, Sov. Phys. Uspekhi 13, 551–580 (1971).Google Scholar
  16. [16]
    J. B. Keller and H. P. McKean, eds., Stochastic differential equations, Am. Math. Soc., Providence, R.I. 1973.Google Scholar
  17. [17]
    R. Dashen, Path integrals for waves in random media (preprint), 1977.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Joseph B. Keller
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew York

Personalised recommendations