Advertisement

A more categorical model of universal algebra

  • J. Reiterman
Section B Computation Theory in Category
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)

Keywords

Complete Lattice Universal Algebra Free Algebra Derivation Tree Left Adjoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Adámek: Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Carolinae 15/1974/, 589–602.Google Scholar
  2. [2]
    J. Adámek: Categorical automata theory and universal algebra, Thesis, Charles University, Prague 1975.Google Scholar
  3. [3]
    M. Barr: Coequalizers and free triples, Math. Z. 116/1970/, 307–322.Google Scholar
  4. [4]
    V. Koubek and J. Reiterman: Automata and categories: input processes, MFCS 75, Lecture Notes in Computer Science 32, 280–286.Google Scholar
  5. [5]
    E.G. Manes: Algebraic theories, GTM 26, Springer Verlag 1976.Google Scholar
  6. [6]
    V. Müller: Algebras and R-algebras, Thesis, Charles University, Prague 1973.Google Scholar
  7. [7]
    J. Reiterman: A left adjoint construction related to free triples, to appear in J. Pure Appl. Algebra.Google Scholar
  8. [8]
    J. Reiterman: Categorical algebraic constructions, Thesis, Charles University, Prague 1976.Google Scholar
  9. [9]
    V. Trnková, J. Adámek, V. Koubek, J. Reiterman: Free algebras, input processes and free monads, Comment. Math. Univ. Carolinae 16/1975/, 339–352.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • J. Reiterman
    • 1
  1. 1.Faculty of Nuclear Science and Technical EngineeringTechnical University of PraguePragueCzechoslovakia

Personalised recommendations