On order-complete universal algebra and enriched functorial semantics

  • J. Meseguer
Section B Computation Theory in Category
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


Algebraic Theory Program Schema Left Adjoint Forgetful Functor Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    ADJ, (1976), "Some fundamentals of order-algebraic semantics", Proc. Symp. Math. Found. Comp. Sci., Gdansk, Springer LNCS 45.Google Scholar
  2. 2.
    ADJ, (1976), "Rational algebraic theories and fixed-point solutions", unpublis—hed, partial summary: IBM RC 6116 Res. Report.Google Scholar
  3. 3.
    Bénabou (1966), "Structures algébriques dans les categories", thesis, published in Cah. Top. Geom. Diff. 10, 1–126.Google Scholar
  4. 4.
    Courcelle, B., Nivat, M., (1976), "Algebraic families of interpretations", Proc. 17th ann. Symp. Found. Comp. Sci., Houston.Google Scholar
  5. 5.
    Day, B., Kelly, M., (1969), "Enriched functor categories", Springer LNM 106.Google Scholar
  6. 6.
    Elgot, C. (1973), "Monadic computation and iterative algebraic theories", Proc. Bristol Logic Coll., North Holland.Google Scholar
  7. 7.
    Gabriel, P., Ulmer, F. (1971), "Lokal präsentierbare Kategorien", Springer LNM 221.Google Scholar
  8. 8.
    Goguen, J., Thatcher, J. (1974), "Initial algebra semantics", Proc. 15th ann. IEEE Symp. SWAT, 63–77.Google Scholar
  9. 9.
    Gray, J. (1975), "Remark on V-algebraic theories", Cah. Topol. Geom. Diff., 16, 240–243.Google Scholar
  10. 10.
    Herrlich, H., Strecker, G., (1973), "Category Theory", Allyn and Bacon.Google Scholar
  11. 11.
    Indermark, K., (1976), personal communication.Google Scholar
  12. 12.
    Johnstone, P., (1975), "Adjoint lifting theorems for categories of algebras", Bull. London Math. Soc. 7, 294–297.Google Scholar
  13. 13.
    Kühnel, W., Meseguer, J., Pfender, M., Sols, I. (1975), "Primitive recursive alge braic theories and program schemas", to appear in Bull. Aus. Math. Soc.Google Scholar
  14. 14.
    Lawvere, F., (1963), "Functorial semantics of algebraic theories", thesis, Columbia U., also Proc. Ntl. Acad. Sci. USA, 50, 869–872.Google Scholar
  15. 15.
    Manes, E., (1976), "Algebraic theories", Springer GTM.Google Scholar
  16. 16.
    Nivat, M., (1975), "On the interpretation of recursive polyadic program schemas", Symposia Mathematica vol. 15, Academic Press.Google Scholar
  17. 17.
    Pfender, M., (1974), "Universal algebra in S-monoidal categories", Algebra Berichte no. 20, München.Google Scholar
  18. 18.
    Sols, I. (1975), "Aportaciones a la teoría de los topos, el algebra universal y-las matemáticas fuzzy", thesis, U. of Zaragoza.Google Scholar
  19. 19.
    Wand, M. (1972), "A concrete approach to abstract recursive definitions", in Automata Languages and Programming, North Holland.Google Scholar
  20. 20.
    Morris, F.L., (1973), "Advice on structuring compilers and proving them correct", Proc. Symp. on Principles of Prog. Lang., Boston, 144–152.Google Scholar
  21. 21.
    Dubuuc, E., (1970), "K an extensions in enriched category theory", Springer LNM 145.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • J. Meseguer
    • 1
  1. 1.Dto. Algebra y Fundamentos Facultad de CienciasSantiago de CompostelaSpain

Personalised recommendations