Nets over many sorted operator domains and their semantics

  • Dittrich G. 
  • Merzenich W. 
Section B Computation Theory in Category
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


In this paper is given a rigorous framework for the description of syntax, behaviour and semantics in the general case of many sorted operator domains, i.e. not only in the case describing the underlying syntax structure by trees.

Given a many sorted operator domain ω, a syntax description is yielded by an ω-net ψ : V → (V+X) ω, that is an object of the category ω-net. Any ω-algebra may be taken as a "processor". Let Beh be an appropriate behaviour category, we get the semantics as a bifunctor
$$Sem:\underline {\Omega - net} ^{op} \times \underline {\Omega - alg} \to \underline {Beh} .$$

A partially defined binary composition * for objects in ω-net such as in Beh is given and it is shown, that Sem preserves these compositions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Goguen, J.A. — Thatcher, J.W. — Wagner, E.G. — Wright, J.B.: Initial algebra semantics and continuous algebras, JACM, Vol. 24 (1977)Google Scholar
  2. [2]
    Dittrich, G. — Merzenich, W.: Syntax and semantics of switching networks over arbitrary algebras, 2. IFAC — Symposium on Discrete Sytems, Vol. 5, Dresden 1977Google Scholar
  3. [3]
    Eilenberg, S.: Automata, languages and machines, Vol. A, Academic Press, 1974Google Scholar
  4. [4]
    Merzenich, W.: A universal interpretation for ω-switching neworks. Submitted for publicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Dittrich G. 
    • 1
  • Merzenich W. 
    • 1
  1. 1.Computer Science DepartmentUniversity of Dortmund46 DortmundFederal Republic of Germany

Personalised recommendations