On the theory of syntactic monoids for rational languages

  • J -F. Perrot
Section A Algebraic & Constructive Theory of Machines, Computations and Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


Inverse Semigroup Free Monoid Prefix Code Rational Language Star Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BOË, J.-M.: Représentations des monoides, application à la théorie des codes, Thèse 3ème Cycle, Montpellier 1976.Google Scholar
  2. 2.
    BOË, J.-M., J. BOYAT, Y. CESARI, A. LACHENY et M. VINCENT: Automates et monoides syntaxiques des sous-monoides libres, to appear in Information and Control.Google Scholar
  3. 3.
    BRZOZOWSKI, J.A.: Hierarchies of aperiodic languages, RAIRO-Informatique Théorique 10 (1976) p.33–49.Google Scholar
  4. 4.
    BRZOZOWSKI, J.A., & R. KNAST: The dot-depth hierarchy of starfree events is infinite, Research Report CS-76-23, University of Waterloo, Canada (1976).Google Scholar
  5. 5.
    CLIFFORD, A.H., & G.B. PRESTON: The Algebraic Theory of Semigroups American Math. Soc., Vol. 1: 1961, Vol. 2: 1967.Google Scholar
  6. 6.
    EILENBERG, S.: Automata, languages and machines, Academic Press Vol. A: 1974, Vol. B: 1976.Google Scholar
  7. 7.
    EILENBERG, S., & M.P. SCHÜTZENBERGER: On Pseudovarieties, Advances in Math. 19 (1976) p. 413–418.Google Scholar
  8. 7′.
    HASHIGUCHI, K., & N. HONDA: Properties of Code events and homomor=phisms over Regular events, J. Comp. Syst. Sci. 12 (1976) 352–367.Google Scholar
  9. 8.
    KEENAN, M., & G. LALLEMENT: On certain codes admitting inverse Semigroups as Syntactic monoids, Semigroup Forum 8 (1974) 312–331.Google Scholar
  10. 9.
    KNAST, R.: Semigroup characterizations of dot-depth one languages to appear in RAIRO-Informatique Théorique.Google Scholar
  11. 10.
    LALLEMENT, G., & E. MILITO: Recognizable languages and finite semilattices of groups, Semigroup Forum 11 (1975) 181–184.Google Scholar
  12. 11.
    PERRIN, D.: La transitivité du groupe d'un code bipréfixe fini, Math. Zeitschrift 153 (1977) 283–287.Google Scholar
  13. 11′.
    PERRIN, D.: Le langage engendré par un code préfixe et son monoïde syntaxique, Thèse 3ème Cycle, Paris 1970.Google Scholar
  14. 12.
    PERRIN, D., & M.P. SCHÜTZENBERGER: Codes et sous-monoides possédant des mots neutres, in Theoretical Computer Science, 3rd GI Conference, Lecture Notes in Computer Science 48 (1977) 270–281.Google Scholar
  15. 13.
    PERROT, J.-F.: Groupes de permutations associés aux codes préfixes finis, in Permutations, Actes d'un Colloque réunis par A. Lentin, Gauthier-Villars/Mouton, 1974, p. 1974.Google Scholar
  16. 14.
    PERROT, J-F.: Informatique et Algèbre, la théorie des codes à longueur variable, in Theoretical Computer Science, 3rd GI Conference, Lecture Notes in Computer Science 48 (1977) p. 27–44.Google Scholar
  17. 15.
    PERROT, J-F., & J. SAKAROVITCH: A Theory of Syntactic Monoids for Context-free Languages, in Proceedings, IFIP Congress '77.Google Scholar
  18. 16.
    RESTIVO, A.: Codes and aperiodic languages, in 1. Fachtagung über Automatentheorie u. formale Sprachen, Lect. Notes in Comp. Science 2 (1973) p. 175–181.Google Scholar
  19. 17.
    RESTIVO, A.: On a question of McNaughton and Papert, Information and Control 25 (1974) 93–101.Google Scholar
  20. 18.
    RESTIVO, A.: A combinatorial property of codes having finite synchronization delay, Theoretical Computer Science 1 (1975) 95–101.Google Scholar
  21. 19.
    SCHÜTZENBERGER, M.P.: Une théorie algébrique du codage, Séminaire Dubreil-Pisot, 1955/56, Exp. no 15 (Institut H. Poincaré, Paris)Google Scholar
  22. 20.
    SCHÜTZENBERGER, M.P.: Sur certaines variétés de monoides finis, in Automata Theory, E.R. Caianiello, Ed., Academic Press 1966, p. 314–319.Google Scholar
  23. 21.
    SCHÜTZENBERGER, M.P.: Sur certaines pseudo-variétés de monoides finis, IRIA-Laboria, Rapport de Recherche no 62, 1974.Google Scholar
  24. 22.
    SCHÜTZENBERGER, M.P.: Sur les monoides finis dont les groupes sont commutatifs, RAIRO R-1, 1974, p. 55–61.Google Scholar
  25. 23.
    SCHÜTZENBERGER, M.P.: Sur certaines propriétés de fermeture dans les langages rationnels, Symposia Mathematica (Roma) XV (1975) p. 245–253.Google Scholar
  26. 24.
    SCHÜTZENBERGER, M.P.: Sur le produit de concaténation non ambigu, Semigroup Forum 13 (1976) 47–75.Google Scholar
  27. 25.
    SCHÜTZENBERGER, M.P.: Une propriété des sous-monoides finiment engendrés d'un monoide libre, to appear.Google Scholar
  28. 26.
    SIMON, I.: Piecewise testable events, in Automata Theory and Formal Languages, 2nd GI Conference, Lecture Notes in Computer Science 33 (1975), p.214–222.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • J -F. Perrot
    • 1
  1. 1.Paris

Personalised recommendations