Advertisement

Stochastic algebras and stochastic automata over general measurable spaces: Algebraic theory and a decomposition theorem

  • Hans Daduna
Section A Algebraic & Constructive Theory of Machines, Computations and Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Carlyle, J.W.: Identification of state-calculable functions of finite markovian chains. Ann.Math.Statist. 38, 201–205, 1967Google Scholar
  2. Daduna, H.: Stochastische Algebra über höchstens abzählbaren Mengen. Elektr. Informationsverarbeitung und Kybernetik 12, 11/12, 589–598, 1976Google Scholar
  3. Dharmadhikari, S.W.: Functions of finite Markov chains. Ann.Math. Statist. 34, 1022–1032, 1963Google Scholar
  4. Grätzer, G.: Universal Algebra. Princeton 1968Google Scholar
  5. Hwang, K.: Cyclic decomposition of stochastic finite-state systems. J.Comp.Syst.Sci. 9, 56–68, 1974Google Scholar
  6. Kemeny, J.G., Snell, L.J.: Finite Markov Chains. Princeton 1960Google Scholar
  7. Paz, A.: Introduction to probabilistic automata, New York, 1971Google Scholar
  8. Wagner, K.: Graphentheorie. Mannheim 1970Google Scholar
  9. Wille R.: Allgemeine Algebra — zwischen Grundlagenforschung und Anwendbarkeit. Darmstadt, 1973 (Preprint)Google Scholar
  10. Zakharin: Lumping the states of Markov and Semimarkov processes and the use of the lumping operation for the investigation of stochastic systems. Kibernetika 4, 56–64, 1972Google Scholar
  11. Zech, K.A.: Eine Bemerkung über stochastische Wahrheitsfunktionen und ihre Anwendung in der Strukturtheorie stochastischer Automaten. Elektr. Informationsverarbeitung und Kybernetik, 7, 505–512, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Hans Daduna
    • 1
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12BRD

Personalised recommendations