Advertisement

Non deterministic recursive program schemes

  • A. Annold
  • M. Nivat
Section A Algebraic & Constructive Theory of Machines, Computations and Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)

Keywords

Compute Function Deterministic Case Computation Sequence DENOTATIONAL Semantic Tree Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.ARNOLD. Systèmes d'équations dans le magmoïde. Ensembles rationnels et algébriques d'arbres. Thèse d'Etat, Lille (1977).Google Scholar
  2. [2]
    A. ARNOLD et M. DAUCHET. Théorie des magmoïdes. Publication du laboratoire de Calcul, Lille (1977).Google Scholar
  3. [3]
    G.BOUDOL. Langages polyadiques algébriques. Théorie des schémas de programme: sémantique de l'appel par valeur. Thèse 3o cycle, Paris (1975).Google Scholar
  4. [4]
    B.COURCELLE and M.NIVAT. Algebraïc families of interpretations. 17th Symp. on Foundations of Computer Science (1976).Google Scholar
  5. [5]
    H.EGLI. A mathematical model for non-deterministic computations. Zürich (1975).Google Scholar
  6. [6]
    J. ENGELFRIET and E.M. SCHMIDT. 10 and 01. Daimi Report PB 47, University of Aarhus, Danemark (1975).Google Scholar
  7. [7]
    M.HENNESSY and E.A. ASHCROFT. The semantics of non determinism. In "Automata, Languages and Programming" 3rd Internat. Colloquium, Edinburgh (1976).Google Scholar
  8. [8]
    P.HITCHCOCK and D.PARK. Induction rules and termination proofs. In "Automata, Languages and Programming" 1st Internat. Colloquium, Paris (1972).Google Scholar
  9. [9]
    M.NIVAT. On the interpretation of Polyadic Recursive Program Schemes. Symp. Mathematica 15 (1975).Google Scholar
  10. [10]
    M.NIVAT. Mots infinis engendrés par une grammaire algébrique. To appear in RAIRO Informatique Théorique.Google Scholar
  11. [11]
    G.D.PLOTKIN. Powerdomain Constructions. SIAM J. on Comput. (1976) 452–486.Google Scholar
  12. [12]
    D.SCOTT. Outline of a mathematical theory of computation. Memo Oxford (1972).Google Scholar
  13. [13]
    J.W. THATCHER, J.A. GOGUEN, E.G. WAGNER and J.B. WRIGHT. Initial Algebra Semantics and Continuous Algebra. J. Assoc. Comput. Mach. 24 (1977) 68–95.Google Scholar
  14. [14]
    J.VUILLEMIN. Syntaxe, Sémantique et Axiomatique d'un Langage de Programmation Simple. Thèse d'Etat, Paris (1974).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • A. Annold
    • 1
  • M. Nivat
    • 2
  1. 1.Université de Lille IFrance
  2. 2.Université Paris VII (LA 248 Informatique Théorique et Programmation) et IRIAFrance

Personalised recommendations