Degrees of circuit complexity

  • Dirk Siefkes
Section C Computability, Decidability & Arithmetic Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


Several types of reductions between finite Boolean functions are introduced and compared. The corresponding degrees are investigated with the purpose to classify Boolean functions.


Boolean Function Turing Machine Complexity Measure Circuit Complexity Computation Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D. 1974: The Design and Analysis of Computer Algorithms. Addison-Wesley, 470 ppGoogle Scholar
  2. Burger, Charlotte N. 1949: Über die Kostenberechnung von kugelähnlichen geometrischen Gebilden. Zeitschr. Anwendb. Nat. Wiss. (Zürich) vol. 1, pp. 59–95Google Scholar
  3. Cook, Stephen A. 1971: The Complexity of Theorem-Proving Procedures. Proc. 3rd ACM Symp. Theory of Computing, pp. 151–158Google Scholar
  4. Ehrenfeucht, Andrzej 1975: Practical Decidability. J. Comp. Syst. Sc. vol. 11, pp. 392–396Google Scholar
  5. Fischer, Michael J. 1974: Lectures on Network Complexity. Lect. Notes Univ. Frankfurt/Main, F.R. Germany, 25 pp.Google Scholar
  6. Fleischmann, K., Mahr, B., Siefkes, D. 1976: Bounded Concatenation Theory as a Uniform Method for Proving Lower Complexity Bounds. Purdue University CSD-TR 202, 22 pp.; to appear in Proc. 1976 Oxford Summer School in Mathematical LogicGoogle Scholar
  7. Fürer, M. 1976: Simulation von Turing-Maschinen mit logischen Netzen. In: /Specker-Strassen 1976/, pp. 163–181Google Scholar
  8. Karp, Richard 1972: Reducibility among Combinatorical Problems. In "Complexity of Computer Computations", ed. R. E. Miller and J. Thatcher, Plenum, pp. 85–104Google Scholar
  9. Reynvaan, C., Schnorr, C.-P. 1977: Über Netzwerkgrößen höherer Ordnung und die mittlere Anzahl der in Netzwerken benutzten Operationen. Proc. 3rd GI Conf. Theoretical Computer Sc., Springer Lect. Notes Comp. Sc. vol. 48, pp. 368–390Google Scholar
  10. Savage, J.E. 1972: Computational Work and Time on Finite Machines, Journ. ACM vol.19, pp. 660–674Google Scholar
  11. Savage, J.E. 1976: The Complexity of Computing, Wiley, 391 pp.Google Scholar
  12. Schnorr, Claus P. 1976: The Network Complexity and the Turing Machine Complexity of Finite Functions. Acta Informatica 7, pp. 95–107Google Scholar
  13. Shannon, C.E. 1949: The Synthesis of Two-Terminal Switching Circuits. Bell Syst. Techn. J. vol. 28, pp. 59–98Google Scholar
  14. Specker, Ernst, Strassen, Volker 1976: Komplexität von Entscheidungsproblemen. Springer Lect. Notes Comp. Sc. vol. 43, 217 pp.Google Scholar
  15. Specker, Ernst, Wick, Georges 1976: Längen von Formeln. In /Specker-Strassen 1976/, pp. 182–217Google Scholar
  16. Thiele, James, Winklamnn, Karl 1976: Personal communicationGoogle Scholar
  17. Zaslavskii, C.D. 1975: On Some Models of Computability of Boolean Functions. In "Math. Found. Comp. Sc. 1975, 4th Symp. Mariańské Lázně", Springer Lect. Notes Comp. Sc. vol. 32, pp. 153–159Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Dirk Siefkes
    • 1
  1. 1.Fachbereich Informatik (20)Technische Universität BerlinBerlin 10Germany

Personalised recommendations