Advertisement

A Dushnik - Miller type dimension of graphs and its complexity

  • J. Nešetřil
  • A. Pultr
Section C Computability, Decidability & Arithmetic Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.W. Beineke and S. Fiorini: On small graphs critical with respect to edge colourings, Discr.Math. 16 (1976), 109–122Google Scholar
  2. [2]
    Ben Dushnik and E.W. Miller: Partially ordered sets, Amer.J. of Math. 63 (1941), 600–610Google Scholar
  3. [3]
    R.L. Graham and H.O. Pollak: On embedding graphs in squashed cubes, Graph Theory and Applications, Lecture Notes in Math. 303, Springer 1972, 99–110Google Scholar
  4. [4]
    R. Karp: Reducibility among combinatorial problems, in: Complexity of Computer Computation, Plenum Press (New York), 1972, 85–103Google Scholar
  5. [5]
    H. Komm: On the dimension of partially ordered sets, Amer.J. of Math. 70 (1948), 507–520Google Scholar
  6. [6]
    J.Nešetřil and A.Pultr: On classes of relations and graphs determined by subobjects and factorobjects, submitted to Discr.Math.Google Scholar
  7. [7]
    J.Nešetřil and V.Rödl: A simple proof of the Galvin-Ramsey property of the class of all finite graphs and a dimension of a graph, to appear in Discr.Math.Google Scholar
  8. [8]
    V. Novák: On the pseudodimension of ordered sets, Czech.Math. J. 13 (1963), 587–597Google Scholar
  9. [9]
    O. Ore: Theory of graphs, AMS Colloq.Publ.Vol.XXXVIII, Providence, Rhode Island, 1962Google Scholar
  10. [10]
    A.Pultr and J.Vinárek: Productive classes and subdirect irreducibility, in particular for graphs, to appear in Discr.Math.Google Scholar
  11. [11]
    W.T. Trotter, Jr.: A note on Dilworth's embedding theorem, Proc. of the AMS 52 (1975), 33–39Google Scholar
  12. [12]
    W.T. Trotter, Jr.: Embedding finite posets in cubes, Discr. Math. 12 (1975), 165–172Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • J. Nešetřil
    • 1
  • A. Pultr
    • 1
  1. 1.Prague

Personalised recommendations