Advertisement

Network complexity

  • Günter Hotz
  • Manfred Stadel
Section C Computability, Decidability & Arithmetic Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)

Keywords

Boolean Function Complexity Measure Boolean Network Monoidial Category Switching Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Budach, L. + Hoehnke, H.J.: Automaten und Funktoren, Akademie-Verlag, Berlin (1975).Google Scholar
  2. [2]
    Claus, V.: Ein Vollständigkeitssatz für Programme und Schaltkreise, Acta Informatica 1 (1971), 64–78.Google Scholar
  3. [3]
    Eilenberg, S. + Kelly, G.M.: Closed Categories, Proc. Conf. Categorial Algebra (La Jolla 1965), Berlin 1966.Google Scholar
  4. [4]
    Hotz, G.: Eine Algebraisierung des Syntheseproblems von Schaltkreisen I und II, Elektron. Inform. Verarb. + Kyb. 1 (1965), 185–205 + 209–231.Google Scholar
  5. [5]
    Hotz, G.: Komplexitätsmaße für Ausdrücke, in "Automata, Languages and Programming", 2nd Colloquium, 1974, Lecture Notes in Computer Science 14, Springer 1974.Google Scholar
  6. [6]
    Hotz, G.: Monotone Boolean Nets, (1976) unpublished.Google Scholar
  7. [7]
    Hotz, G. + Claus, V.: Autoamtentheorie und formale Sprachen: III Formale Sprachen, BI, Mannheim (1971).Google Scholar
  8. [8]
    Mehlhorn, K.: Monotone Switching Circuits and Boolean Matrix Product, Computing 16 (1976) 99–111.Google Scholar
  9. [9]
    Paterson, M.S.: New Bounds on Formula Size, in "Theoretical Computer Science", 3rd GI Conference, Darmstadt 1977, Lecture Notes in Computer Science 48, Springer, Berlin (1977).Google Scholar
  10. [10]
    Paterson, M.S.: Complexity of Monotone Networks for Boolean Matrix Product, University of Warwich, TR 2, 1974 (to appear in Theoretical Computer Science).Google Scholar
  11. [11]
    Paul, W.: A 2.5 N lower Bound for the Combinatorial Complexity of Boolean Functions, Proc. 7th Ann. ACM Symp. on Th. of Comp., Albuquerque (1975), 27–36.Google Scholar
  12. [12]
    Paul, W.: Realizing Boolean Functions on Disjoint sets of Variables, Theoretical Comp. Sc. 1, (1976), 383–396.Google Scholar
  13. [13]
    Paul, W. + Stoss, H.J.: Zur Komplexität von Sortierproblemen, Acta Informatica 3 (1974) 217–225.Google Scholar
  14. [14]
    Savage, J.E.: The Complexity of Computing, Wiley-Interscience, New York, 1976.Google Scholar
  15. [15]
    Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen, Computing 13 (1974) 155–171.Google Scholar
  16. [16]
    Strassen, V.: Berechnung und Programm I, II, Acta Informatica 1 (1972), 320–334 and 2 (1973), 64–79.Google Scholar
  17. [17]
    Strassen, V.: Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Num.Math 20 (1973) 238–251.Google Scholar
  18. [18]
    Yao, A.C. + Yao, F.F.: Lower Bounds on Merging Networks, J.of ACM, Vol. 23, 3 (1976), 566–571.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Günter Hotz
  • Manfred Stadel

There are no affiliations available

Personalised recommendations