Complexity of sequence encodings

  • Sándor Horváth
Section C Computability, Decidability & Arithmetic Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Monatshefte Math. Phys., 38 (1931), 173–198.Google Scholar
  2. 2.
    Rogers, H., Gödel numberings of partial recursive functions, J. Symb. Log., 22 (1958), 331–341.Google Scholar
  3. 3.
    Smullyan, R. M., Theory of Formal Systems, Ann. Math. 47, Princeton Univ., 1961.Google Scholar
  4. 4.
    Blum, M., A machine-independent theory of the complexity of recursive functions, JACM, 14 (1967), 322–336.Google Scholar
  5. 5.
    Hartmanis, J., Computational complexity of random access stored program machines, Math. Syst. Theory, 5 (1971), 232–245.Google Scholar
  6. 6.
    Engeler, E., Introduction to the Theory of Computing, Acad. Press, 1973, pp. 172–189.Google Scholar
  7. 7.
    Schnorr, C. P., Rekursive Funktionen und ihre Komplexität, B. G. Teubner Studienbücher Series, Informatik, Stuttgart, 1974.Google Scholar
  8. 8.
    Horváth, S., Optimal RASP programs for arbitrarily complex 0–1 valued functions, presented at the int.-1 conf. Mathematical Foundations of Computer Science 1977, Tatr. Lomnica, Czechoslovakia, September 5–9, 1977; the proc. of the conf. is published as a volume of Springer Lect. Notes Comp. Sci., 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Sándor Horváth
    • 1
  1. 1.Department of Computer MathematicsEötvös Loránd UniversityBudapest 8Hungary

Personalised recommendations