Generalized linton algebras

  • A. Wiweger
Section B Computation Theory in Category
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.R. Isbell, Adequate subcategories, Illinois J. Math. 4, 541–552 (1960).Google Scholar
  2. [2]
    F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50, 869–873 (1963).Google Scholar
  3. [3]
    F.E.J. Linton, Some aspects of equational categories. Proceedings of the Conference on Categorical Algebra, La Jolla, 1965, pp. 84–95. New York: Springer 1966.Google Scholar
  4. [4]
    B. Mitchell, Theory of categories. New York-London: Academic Press 1965.Google Scholar
  5. [5]
    H. Schubert, Categories, Berlin-Heidelberg-New York: Springer 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • A. Wiweger
    • 1
  1. 1.Instytut Matematyczny PANWarszawaPoland

Personalised recommendations