Advertisement

Relational automata in a category and their languages

  • Věra Trnková
Section B Computation Theory in Category
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)

Keywords

State Object Input Process Finite Automaton Free Algebra Minimal Realization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Free algebras and automata realizations in the language of categories.Comment.Math.Univ.Carolinae 15(1974),589–602.Google Scholar
  2. 2.
    Adámek,J., Realization theory for automata in categories.To appear in J.of Pure and Applied Algebra.Google Scholar
  3. 3.
    Adámek, J., Automata and categories: Finiteness contra minimality. Math.Found.of Comp.Sci.1975,Lect.Notes in C.S.32(1975),160–166.Google Scholar
  4. 4.
    Adámek, J., Cogeneration of algebras in regular categories.To appear in Bull.Austral.Math.Soc.Google Scholar
  5. 5.
    Adámek, J. and Koubek, V., Remarks on fixed points of functors.These Proceedings.Google Scholar
  6. 6.
    Adámek, J. and Trnková, V., Recognizable and regular languages in a category.These Proceedings.Google Scholar
  7. 7.
    Arbib, M.A. and Manes, E.G., A categorist's view of automata and systems.Category Theory applied to Comput.and Control,Proc.of the First Internat.Sympos.1974,62–76.Google Scholar
  8. 8.
    Arbib, M.A. and Manes, E.G., Machines in a Category:An expository introduction.SIAM Review 16(1974),163–192.Google Scholar
  9. 9.
    Arbib, M.A. and Manes E.G., Fuzzy machines in a category.Bull.Austral.Math.Soc.13(1975),169–210.Google Scholar
  10. 10.
    Barr, M., Relational algebras.Lect.Notes in Math.137(1970),39–55.Google Scholar
  11. 11.
    Ehrig, H., Universal theory of automata.Teubner Studienbüch.1974.Google Scholar
  12. 12.
    Goguen, I.A., Minimal realization of machines in closed categories.Bull.Amer.Math.Soc.78(1972),777–784.Google Scholar
  13. 13.
    Goguen, I.A., Realization is Universal.Math.Syst.Theory 6(1973),359–374.Google Scholar
  14. 14.
    Grillet, P.A., Regular categories.Lect.Notes in Math.236(1971),121–221.Google Scholar
  15. 15.
    Koubek, V. and Reiterman, J., Automata and Categories-Input processes.Math.Found.of Comp.Sci.1975, Lect.Notes in C.S.32(1975),280–286.Google Scholar
  16. 16.
    Kůrková-Pohlová, V. and Koubek, V., When a generalized algebraic category is monadic.Comment.Math.Univ.Carolinae 15(1974),577–602.Google Scholar
  17. 17.
    MacLane, S., Categories for the working mathematician.Springer, New York-Heidelberg-Berlin,1971.Google Scholar
  18. 18.
    Manes, E.G., Algebraic Theories.Springer-Verlag, New York-Heidelberg-Berlin,1976.Google Scholar
  19. 19.
    Reitermann, J., Universal algebra, these Proceedings.Google Scholar
  20. 20.
    Thatcher, J.W. and Wright, J.B., Generalized Finite Automata Theory with an Application to a Decision Problem of Second Order Logic.Math.Syst.Theory 2(1968),57–81.Google Scholar
  21. 21.
    Trnková, V., On descriptive classification of set functors I.and II.Comment.Math.Univ.Carolinae 12(1971),143–174 and 345–357.Google Scholar
  22. 22.
    Trnková, V., On minimal realizations of behavior maps in categorial automata theory.Comment.Math.Univ.Carolinae 15(1974),555–566.Google Scholar
  23. 23.
    Trnková, V., Minimal realizations for finite sets in categorial automata theory.Comment.Math.Univ.Carolinae 16(1975),21–35.Google Scholar
  24. 24.
    Trnková, V., Automata and categories.Math.Found.of Comp.Sci.1975, Lect.Notes in C.S.32(1975),138–152.Google Scholar
  25. 25.
    Trnková, V. and Adámek, J., Minimal realization is not universal.To appear.Google Scholar
  26. 26.
    Trnková, V. and Adámek, J., On Languages accepted by machines in the category of sets.Math.Found.of Comp.Sci.1977,Lect.Notes in C.S.Google Scholar
  27. 27.
    Trnková, V., Adámek J., Koubek, V. and Reiterman J., Free algebras, input processes and free monads.Comment.Math.Univ.Carolinae 16(1975),339–351.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Věra Trnková
    • 1
  1. 1.Department of MathematicsCharles UniversityPraha 8Czechoslovakia

Personalised recommendations