Formal transformations and the development of programs

  • Friedrich W. von Henke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 53)


Binary Tree Computable Function Computation Tree Recursive Call Iterative Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Burstall and J. Darlington: A transformation system for developing recursive programs. Journal of the ACM 24 (1977), 44–67.CrossRefGoogle Scholar
  2. 2.
    D.P. Friedman and D.S. Wise: Output driven interpretation of recursive programs, or writing creates and destroys data structures. Information Processing Letters 5 (1976), 155–160.CrossRefGoogle Scholar
  3. 3.
    F.W. v. Henke: On the representation of data structures in LCF. Memo AIM-267, Stanford University, 1975.Google Scholar
  4. 4.
    F.W. v. Henke: Recursive data types and program structures. Internal report, GMD Bonn, 1976.Google Scholar
  5. 5.
    F.W. v. Henke: An algebraic approach to data types, program verification, and program synthesis. Proc. MFCS'76, Springer Lecture Notes in Computer Science No. 45, 1976.Google Scholar
  6. 6.
    D.E. Knuth: Structured programming with go to statements. Computing Surveys 6 (1974), 261–301.CrossRefGoogle Scholar
  7. 7.
    D.B. Loveman: Program improvement by source-to-source transformation. Journal of the ACM 24 (1977), 121–145.CrossRefGoogle Scholar
  8. 8.
    R. Milner: Implementation and applications of Scott's logic for computable functions. Proc. ACM Conf. on Proving Assertions about Programs, Las Cruces, 1972.Google Scholar
  9. 9.
    R. Milner: Logic for Computable Functions — description of an implementation. Memo AIM-169, Stanford University, 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Friedrich W. von Henke
    • 1
  1. 1.Gesellschaft für Mathematik und Datenverarbeitung BonnSt. Augustin 1Germany

Personalised recommendations