Properties of complexity classes a short survey

  • Gerd Wechsung
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 53)


This short survey of properties of complexity classes (CC's for short) does not pretend to be complete. We rather confine ourselves to the illustration of important features by typical examples. Simultaneously an attempt is made to find a reasonable systematization of the vast variety of papers contributing to our topic. Among the chosen examples there are four so far unpublished statements (numbered (5), (6), (19) and (35)) about the return complexity [70] and a new measure A for nondeterministic Turing machines (NDTM) which is similar to the return complexity.


Turing Machine Complexity Class Recursive Function Regular Language Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A. V., Hopcroft, J. E., Ullman, J. D., The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.Google Scholar
  2. 2.
    Barashko, A. S., Roizen, S. I., Kernels of partial recursive functions naming complexity classes. Kibernetika (Kiev) 5 (1976) 10–15.Google Scholar
  3. 3.
    Book, R. V., On languages accepted in polynomial time. SIAM J. Comp. 1,4 (1972) 281–287.CrossRefGoogle Scholar
  4. 4.
    Book, R. V., Tally languages and complexity classes. Inf. and Contr. 26 (1974) 186–193.CrossRefGoogle Scholar
  5. 5.
    Book, R. V., Translational lemmas, polynomial time and (logn)j-space. TCS 1 (1976) 215–226.CrossRefGoogle Scholar
  6. 6.
    Book, R. V., Greibach, S. A., Ibarra, O. H., Wegbreit, B., Tape bounded Turing acceptors and principal AFL. JCSS 4 (1970) 622–625.Google Scholar
  7. 7.
    Book, R. V., Greibach, S. A., Wegbreit, B., Time and tape bounded Turing acceptors and AFLs. JCSS 4 (1970) 606–621.Google Scholar
  8. 8.
    Chytil, M. P., Crossing-bounded computations and their relation to LBA-problem. Kybernetika 12 (1976) 76–85.Google Scholar
  9. 9.
    Chytil, M. P., Analysis of the non-context-free component of formal languages. LNCS 45 (1976) 230–236.Google Scholar
  10. 10.
    Cobham, A., The intrinsic computational difficulty of functions. Proc. Int. Congr. Logic, Methodology a. Philosophie of Science 1964, North Holland, Amsterdam 1965, 24–30.Google Scholar
  11. 11.
    Constable, R. L., Type two computational complexity. Proc. 5th Ann. ACM Symp. Theory of Comput. (1973) 108–121.Google Scholar
  12. 12.
    Cook, S. A., Characterizations of pushdown machines in terms of time bounded computers. JACM 18,1 (1971) 4–18.CrossRefGoogle Scholar
  13. 13.
    Cook, S. A., Linear time simulation of deterministic two-way pushdown automata. In: Information processing 71 (Proc. IFIP Congress Ljubljana 1971), Vol. 1, pp. 75–80. Amsterdam 1972.Google Scholar
  14. 14.
    Enderton, H., Degrees of computational complexity. JCSS 6 (1972) 389–396.Google Scholar
  15. 15.
    Fischer, P. C., Meyer, A. R., Rosenberg, A. L., Counter machines and counter languages. MST 2,3 (1968) 265–283.Google Scholar
  16. 16.
    Galil, Z., Hierarchies of complete problems. Acta Inf. 6 (1976) 77–88.Google Scholar
  17. 17.
    Ginsburg, S., Algebraic and Automata-Theoretic Properties of Formal Languages. North-Holland Amsterdam, 1975.Google Scholar
  18. 18.
    Ginsburg, S., Rose, G., On the existence of generators for certain AFL. Inform. Sci. 2(1970) 431–446.CrossRefGoogle Scholar
  19. 19.
    Giuliano, J. A., Writing stack acceptors. JCSS 6 (1972) 168–204.Google Scholar
  20. 20.
    Glebski, Ju. V., Kogan, D. I., Additive control systems and languages some algorithmic problems. Kibernetika (Kiev) 4 (1971) 25–29.Google Scholar
  21. 21.
    Graham, S. L., Harrison, M. A., Ruzzo, W. L., On line context-free language recognition in less than cubic time. Proc. 8th Ann. ACM Symp. Theory of Comput., Hershey 1976, 112–120.Google Scholar
  22. 22.
    Greibach, S. A., The hardest context-free language. SIAM J. Comp. 2 (1973) 304–310.CrossRefGoogle Scholar
  23. 23.
    Hartmanis, J., Computational complexity of one-tape Turing machine computations. JACM 15,2 (1968) 325–339.CrossRefGoogle Scholar
  24. 24.
    Hartmanis, J., On non-determinacy in simple computing devices. Acta Inf. 1(1972) 336–344.CrossRefGoogle Scholar
  25. 25.
    Hartmanis, J., Hopcroft, J. E., An overview of the theory of computational complexity. JACM 18 (1971) 444–475.CrossRefGoogle Scholar
  26. 26.
    Hartmanis, J., Hunt III, H. B., The LBA problem and its importance in the theory of computing. SIAM-AMS proceedings, vol. 7 (1974) 1–26.Google Scholar
  27. 27.
    Hartmanis, J., Simon, J., On the structure of feasible computations. In: Advances in Computers, vol. 14, pp. 1–43. Academic Press, New York, 1976.Google Scholar
  28. 28.
    Hennie, F. C., One-tape off-line Turing machine computations. Information and Control 8,6 (1965) 553–578.CrossRefGoogle Scholar
  29. 29.
    Hopcroft, J., Paul, W., Valiant, L., On time versus space and related problems. 16th Ann. Symp. on Found. of Comp. Sc. 1975, 57–64.Google Scholar
  30. 30.
    Hopcroft, J. E., Ullman, J. D., Nonerasing stack automata. JCSS 1,2 (1967) 166–186.Google Scholar
  31. 31.
    Hořejš, J., Recursive functions computable within Cflogf. Kibernetika 5,5 (1969) 384–398.Google Scholar
  32. 32.
    Hunt III, H. B., On the time and tape complexity of languages I. Proc. 5th Ann. A CM Symp. Theory of Comput. 1973, 10–19.Google Scholar
  33. 33.
    Ibarra, O. H., Characterizations of some tape and time complexity classes of Turing machines in terms of multihead and auxiliary stack automata. JCSS 5 (1971) 88–117.Google Scholar
  34. 34.
    Jones, N. D., Reducibility among combinatorial problems in log n space. Proc. 7th Ann. Princeton Conf. on Information Sciences and Systems 1973, 547–551.Google Scholar
  35. 35.
    Jones, N.D., Selman, A. L., Turing machines and the spectra of first-order formulas. JSL 39, 1 (1974) 139–150.Google Scholar
  36. 36.
    Kameda, T., Constant-tape-reversal bounded Turing machine computations. Proc. Intern. Computing Symposium 1970, Bonn, 649–654.Google Scholar
  37. 37.
    Karp, R. M., On the computational complexity of combinatorial problems. Networks 5 (1975) 45–68.Google Scholar
  38. 38.
    Ladner, R. E., Polynomial time reducibility. Proc. 5th Ann. ACM Symp. Theory of Comput. 1973, 122–129.Google Scholar
  39. 39.
    Ladner, R. E., Lynch, N. A., Selman, A. L., A comparison of polynomial time reducibilities. TCS 1 (1975) 103–123.Google Scholar
  40. 40.
    Lewis, F. D., On computational reducibility. JCSS 12,1 (1976) 122–131.Google Scholar
  41. 41.
    Lewis, II, P. M., Stearns, R. E., Hartmanis, J., Memory bounds for recognition of context-free and contextsensitive languages. IEEE Conf. Rec. Switch. Circuit Theory and Logig Design pp. 191–202, New York, 1965.Google Scholar
  42. 42.
    Lind, J. C., Computing in logarithmic space. MAC MEM 52, MIT, 1974.Google Scholar
  43. 43.
    Mager, G., Writing pushdown acceptors, JCSS 3 (1969) 276–318.Google Scholar
  44. 44.
    Mc Creight, E. M., Classes of computable functions defined by bounds on computation. Diss., Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1969.Google Scholar
  45. 45.
    Mehlhorn, K., Polynomial and abstract subrecursive classes. JCSS 12,2 (1976) 147–178.Google Scholar
  46. 46.
    Meyer, A. R., Stockmeyer, L. J., Word problems requiring exponential time. Proc. 5th Ann. ACM Symp. Theory of Computing 1973) 1–9.Google Scholar
  47. 47.
    Moll, R., An operator imbedding theorem for complexity classes of recursive functions. TCS 1 (1976) 193–198.CrossRefGoogle Scholar
  48. 48.
    Monien, B., Characterization of time bounded computations by limited primitive recursion. LNCS 14 (1974) 280–293.Google Scholar
  49. 49.
    Monien, B., Relationships between pushdown automata with counters and complexity classes. MST 9 (1975) 248–264.Google Scholar
  50. 50.
    Monien, B., About the simulation of nondeterministic log n-tape bounded Turing machines. LNCS 33 (1975) 118–126.Google Scholar
  51. 51.
    Monien, B., A recursive and grammatical characterization of the exponential time languages. TCS 3 (1977) 61–74.CrossRefGoogle Scholar
  52. 52.
    Nepomnyashchi, V. A., A rudimentary interpretation of two-tape Turing computations. Kibernetika (Kiev) 2 (1970) 29–35.Google Scholar
  53. 53.
    Nepomnyashchi, V. A., On tape complexity for recognition of context-free languages. Kibernetika (Kiev) 5 (1975) 64–68.Google Scholar
  54. 54.
    Paterson, M. S., Tape bounds for time bounded Turing machines. JCSS 6 (1972) 116–124.Google Scholar
  55. 55.
    Peckel, J., On a deterministic subclass of context-free languages. This volume.Google Scholar
  56. 56.
    Ritchie, R., Springsteel, F. N., Language recognition by marking automata. Inf. and Contr. 20 (1972) 313–330.CrossRefGoogle Scholar
  57. 57.
    Robertson, E. L., Complexity classes of partial recursive functions. JCSS 9 (1974) 69–87.Google Scholar
  58. 58.
    Rosenberg, A. L., Real-time definable languages. JACM 14, 4 (1967) 645–662.CrossRefGoogle Scholar
  59. 59.
    Rounds, W. C., A grammatical characterization of exponential time languages. 16th Ann. Symp. on Found. of Computer Sc. (1975) 135–143.Google Scholar
  60. 60.
    Savitch, W. J., Relationship between nondeterministic and deterministic tape complexities. JCSS 4 (1970) 177–192.Google Scholar
  61. 61.
    Schaefer, T. J., Complexity of decision problems based on finite two-person perfect-information games. 8th. Ann. ACM Symp. Theory of Computing (1976) 41–49.Google Scholar
  62. 62.
    Shamir, E., Beeri, C., Checking stacks and context-free programmed grammars accept p-complete languages. LNCS 14 (1974) 27–33.Google Scholar
  63. 63.
    Smith III, A.R., Cellular automata complexity trade-offs. Inf. and Control 18 (1971) 466–482.CrossRefGoogle Scholar
  64. 64.
    Specker, E., Strassen, V., Komplexität von Entscheidungsproblemen. LNCS 43, Springer Verlag 1976.Google Scholar
  65. 65.
    Springsteel, F. N., On the pre-AFL of logn space and related families of languages. TCS 2 (1976) 295–304.CrossRefGoogle Scholar
  66. 66.
    Stearns, R. E., Hartmanis, J., Lewis II, P. M., Hierarchies of memory limited computations. IEEE Conf. Rec. Switch. Circuit Theory and Logic. Design, New York 1965, 179–190.Google Scholar
  67. 67.
    Stockmeyer, L. J., The polynomial-time hierarchy. TCS 3 (1977) 1–22.CrossRefGoogle Scholar
  68. 68.
    Sudborough, I. H., On tape-bounded complexity classes and multihead finite automata. JCSS 10 (1975) 62–76.Google Scholar
  69. 69.
    Trachtenbrot, B. A., Turing computations with logarithmic delay. Algebra i Logika 3, 4 (1964) 33–48.Google Scholar
  70. 70.
    Wechsung, G., Kompliziertheitstheoretische Charakterisierung der kontextfreien und linearen Sprachen. EIK 12 (1976) 289–300.Google Scholar
  71. 71.
    Weihrauch, K., Teilklassen primitiv-rekursiver Wortfunktionen. Ges. f. Mathematik und Datenverarbeitung, Bonn 1974, Nr. 91.Google Scholar
  72. 72.
    Wrathall, C., Complete sets and the polynomial-time hierarchy. TCS 3 (1977) 23–33.CrossRefGoogle Scholar
  73. 73.
    Younger, D. H., Recognition and parsing of context-free languages in time n3. Inf. and Contr. 10, 2 (1967) 189–208.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Gerd Wechsung
    • 1
  1. 1.Sektion Mathematik der Friedrich-Schiller-Universität JenaJenaDDR

Personalised recommendations