Tree-structures for set manipulation problems

  • H. A. Maurer
  • Th. Ottmann
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 53)


We discuss the use of tree-structures for finding efficient solutions for the well-known dictionary problem and generalizations thereof. In doing so, we present a number of known techniques together with recent developments. In particular, we mention recent results concerning trees of very small height suitable for implementing dictionaries, results concerning the non-uniform dictionary problem and new results on one-sided AVL trees.


Binary Tree Binary Search Interior Node Small Height Balance Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelson-Velskii, G.M., Landis, E.M., An algorithm for the organization of information (Russian), Doklady Akad. Nauk, SSSR 146 (1962) 263–266.Google Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D., The design and analysis of computer algorithms, Addison-Wesley, Reading (1974)Google Scholar
  3. 3.
    Baer, J.L., Weight-balanced trees, AFIPS-Proceedings, vol. 44 (1975) 467–472.Google Scholar
  4. 4.
    Bayer, R., McCreight, E., Organization and Maintenance of Large Ordered Indexes. Acta Informatica 1 (1972) 173–189.CrossRefGoogle Scholar
  5. 5.
    Bayer, R., Symmetric B-trees, Acta Informatica 1 (1972) 290–306.CrossRefGoogle Scholar
  6. 6.
    Hirschberg, D.S., An insertion technique for one-sided height-balanced trees. Comm. ACM 19, 8 (Aug. 1976) 471–473.CrossRefGoogle Scholar
  7. 7.
    Hu, T.C., Tucker, A.C., Optimum binary search trees. SIAM J. Appl. Math., 21:4 (1971) 514–532.CrossRefGoogle Scholar
  8. 8.
    Knuth, D.E., The art of computer programming, I, III. Addison-Wesley (1967 and 1973).Google Scholar
  9. 9.
    Maurer, H.A., Datenstrukturen und Programmierverfahren. Teubner, Stuttgart (1974).Google Scholar
  10. 10.
    Maurer, H.A., Data structures and programming techniques. Prentice-Hall, Englewood Cliffs (1977).Google Scholar
  11. 11.
    Maurer, H.A., Wood, D., Zur Manipulation von Zahlenmengen. Angewandte Informatik 4 (1976) 143–149.Google Scholar
  12. 12.
    Maurer, H.A., Ottmann, Th., Six, H.-W., Implementing dictionaries using binary trees of very small height. Information Processing Letters 5 (1976) 11–14.CrossRefGoogle Scholar
  13. 13.
    Maurer, H.A., Ottmann, Th., Six, H.-W., Manipulation of number sets using balanced trees. Applied Computer Science, vol. 4 Carl Hanser, München (1976) 9–37.Google Scholar
  14. 14.
    Mehlhorn, K., Nearly optimal binary search trees. Acta Informatica 5 (1975) 287–295.CrossRefGoogle Scholar
  15. 15.
    Mehlhorn, K., Dynamic binary search trees. Fourth international Colloquium on Automata, Languages and Programming, Turku (1977).Google Scholar
  16. 16.
    Nievergelt, J., Reingold, E.M., Binary trees of bounded balance. SIAM Journal of Computing 2 (1973) 33–43.CrossRefGoogle Scholar
  17. 17.
    Ottmann, Th., Six, H.-W., Eine neue Klasse von ausgeglichenen Binärbäumen. Angewandte Informatik 8 (1976) 395–400.Google Scholar
  18. 18.
    Ottmann, Th., Six, H.-W., Wood, D., Right-brother-trees. Report 60 Institut fuer Angewandte Informatik und Formale Beschreibungsverfahren, Universitaet Karlsruhe, 75 Karlsruhe, W-Germany.Google Scholar
  19. 19.
    Ottmann, Th., Wood, D., Deletion in onse-sided height balanced search trees. Report: McMaster University, Hamilton, Department of Mathematics, Hamilton, Ontario, Canada (1977).Google Scholar
  20. 20.
    Ottmann, Th., Six, H.-W., Wood, D., On the correspondence between AVL trees and brother trees. Report 61 Institut fuer Ángewandte Informatik und Formale Beschreibungsverfahren, Universitaet Karlsruhe, 75 Karlsruhe, W-Germany (1977).Google Scholar
  21. 21.
    van Leeuwen, J., The complexity of data organization. Mathematical Centre Tracts 81 (1976) 37–147.Google Scholar
  22. 22.
    Wirth, N., Algorithmen und Datenstrukturen, Teubner, 70 Stuttgart, W-Germany (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • H. A. Maurer
    • 1
  • Th. Ottmann
    • 1
  1. 1.Institut fuer Angewandte Informatik und Formale BeschreibungsverfahrenUniversitaet Karlsruhe75 KarlsruheW-Germany

Personalised recommendations