A comparative review of some program verification methods

  • Andrzej Blikle
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 53)


Total Correctness Denotational Semantic Partial Correctness Program Verification Weak Precondition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Bakker, J.W. The fixed-point approach in semantics: theory and applications. In: Foundations of Comp. Sci. ( Bakker, Ed.) pp.3–53, 1975. Mathematical Centre Tracts 63, Amsterdam 1975Google Scholar
  2. 2.
    de Bakker, J.W. and Meertens, L.G.L.T. On the completeness of the inductive assertion method. J. Comp.Syst.Sci., 11 (1975), 323–257Google Scholar
  3. 3.
    Basu, S.K. and Yeh, R.T. Strong verification of programs. IEEE Trans. on Software Eng., SE-1 (1975), 339–345.Google Scholar
  4. 4.
    Bekić, H. Definable operations in general algebras and the theory of automata and flowcharts. unpublished manuscript, IBM Laboratory, Vienna 1969.Google Scholar
  5. 5.
    Blikle, A. Iterative systems; an algebraic approach, Bull. Acad. Polon. des Sci., Ser.sci.math.astronom. et phys., 20 (1971), 51–55Google Scholar
  6. 6.
    Blikle, A. An analysis of programs by algebraic means. In: Mathematical Foundations of Comp. Sci. (A.Mazurkiewicz, Ed.), Banach Center Publications, vol.2 (1977), Polish Scientific Publishers, Warsaw 1977Google Scholar
  7. 7.
    Blikle, A. An analytic approach to the verification of iterative programs. Proc. IFIP-1977 Congress, Toronto 1977Google Scholar
  8. 8.
    Blikle, A. and Budkowski, S. Certification of microprograms by an algebraic method. Micro-9 Proc., Ninth Annual Workshop on Micro-programming, September 1976, 9–14Google Scholar
  9. 9.
    Blikle, A. and Mazurkiewicz, A. An algebraic approach to the theory of programs, algorithms, languages and recursiveness. In: Math. Found. Comp. Sci. (Proc. Warsaw-Jablonna, 1972), Warsaw 1972Google Scholar
  10. 10.
    Dijkstra, E. A Discipline of Programming. Prentice-Hall, Inc., Englewood Cliffs 1976Google Scholar
  11. 11.
    Floyd, R.W. Assigning meanings to programs. Proc. Symp. in Applied Math. 19 (1967), 19–32Google Scholar
  12. 12.
    Hoare, C.A.R. An axiomatic basis for computer programming, Communication of ACM, 12 (1969), 576–583CrossRefGoogle Scholar
  13. 13.
    Katz, S. and Manna, Z. Logical analysis of programs. Communications of ACM, 19 (1976), 188–206CrossRefGoogle Scholar
  14. 14.
    Kleene, S.C. Introduction to Metamathematics, North-Holland, Amsterdam 1952Google Scholar
  15. 15.
    Landin, P.J. The next 700 programming languages, Communication of ACM, 9 (1966), 157–164CrossRefGoogle Scholar
  16. 16.
    Manna, Z. The correctness of programs. J. Comp. Syst. Sci., 3 (1969), 119–127Google Scholar
  17. 17.
    Manna, Z. Mathematical Theory of Computation. McGraw-Hill, New York 1974Google Scholar
  18. 18.
    Manna, Z. and Pnueli, A. Axiomatic approach to total correctness of programs. Acta Informatica (1974)Google Scholar
  19. 19.
    Mazurkiewicz, A. Proving algorithms by tail functions. Working paper for IFIP WG 2.2. February 1970, since published in Information and Control, 18 (1971), 220–226CrossRefGoogle Scholar
  20. 20.
    Mazurkiewicz, A. Iteratively computable relations. Bull. Acad. Polon. Sci., Ser.sci.math.astronom. phys., 20 (1972), 793–797Google Scholar
  21. 21.
    Mazurkiewicz, A. Proving properties of processes. Algorytmy, 11 (1974), 5–22Google Scholar
  22. 22.
    Milne, R. and Strachey, Ch. A Theory of Programming Language Semantics, Chapman and Hall, London 1977Google Scholar
  23. 23.
    Morris, F.L. The next 700 programming language description, unpublished manuscript.Google Scholar
  24. 24.
    Mosses, P. The mathematical semantics of ALGOL 60. Technical Monograph PRG-12, Oxford University, 1974Google Scholar
  25. 25.
    Park, D. Fixpoint induction and proofs of program properties. In: Machine Intelligence, vol. 5 (B. Meltzer and D. Michie eds.), pp.59–78. Edinburgh University Press, Edinburgh 1970Google Scholar
  26. 26.
    de Roever, W.P. Dijkstra's predicate transformer, non-determinism, recursion and termination. In: Math. Found. Comp. Sci. 1976 (Proc. Symp. Gdansk, 1976, A. Mazurkiewicz, Ed.) Lecture Note in CS, Springer, Berlin, 472–481Google Scholar
  27. 27.
    Scott, D. and de Bakker, J.W. A theory of programs, unpublished notes, IBM seminar, Vienna 1969Google Scholar
  28. 28.
    Strachey, C. and Wadsworth, C.P. Continuation, a mathematical semantics for handling full jumps. Technical Monograph PRG-11, Oxford 1974Google Scholar
  29. 29.
    Tarski, A. A lattice-theoretic fixedpoint theorem and its applications. Pacific Journal of Math., 5 (1955), 285–309Google Scholar
  30. 30.
    Turing, A.M. On checking a large routine. Report of a Conference on High Speed Automatic Calculating Machines, pp.67–69, University Mathematical Laboratory, Cambridge 1949Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Andrzej Blikle
    • 1
  1. 1.Institute of ComputerScience of the Polish Academy of SciencesWarsawPoland

Personalised recommendations