Advertisement

Gauge theory of strong and electromagnetic interactions formulated on a fiber bundle of cartan type

Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 67)

Keywords

Gauge Theory Gauge Group Gauge Transformation Fiber Bundle Base Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. (1).
    S. Weinberg, Phys.Rev.Letters, 19, 1264 (1967)Google Scholar
  2. (1a).
    A. Salam, in,Elementary Particle Theory, edited by N. Svartholm~Almquist and Wiksell Förlag, Stockholm 1968Google Scholar
  3. (1b).
    E.S. Abers and B.W. Lee, Phys.Reports 9C, No 1 (1973).Google Scholar
  4. (2).
    T.W.B. Kibble, J.Math.Phys. 2, 212 (1961)Google Scholar
  5. (2a).
    D.W. Sciama, Recent Developments in General Relativity, Pergamon Press, London 1962, p. 415.Google Scholar
  6. (2b).
    K. Hayashi and T. Nakano, Progr.Theor.Phys. 38, 491 (1967).Google Scholar
  7. (3).
    C.N. Yang and R.L. Mills, Phys.Rev. 96, 191 (1954).Google Scholar
  8. (4).
    R. Utiyama, Phys.Rev. 101, 1597 (1956).Google Scholar
  9. (5).
    J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, Mac Graw Hill Book Company, New York 1965.Google Scholar
  10. (6).
    S. Mandelstam, Ann. of Phys. 19, 1 (1962).Google Scholar
  11. (7).
    T.T. Wu and C.N. Yang, Phys.Rev. D12, 3843 (1975).Google Scholar
  12. (8).
    Y. Aharonov and D. Bohm, Phys.Rev. 115, 485 (1959).Google Scholar
  13. (9).
    H. Weyl, Ber.d.preuss.Akad.d.Wissensch. 1918, p. 465, and Naturwiss., 49 (1931).Google Scholar
  14. (10).
    F. London, Naturwiss. 15, 187 (1927), and Z.f.Physik 42, 375 (1927).Google Scholar
  15. (11).
    R.G. Chambers, Phys.Rev.Letters 5, 3 (1960).Google Scholar
  16. (12).
    P.A.M. Dirac, Proc.Roy.Soc. (London) 133, 60 (1931).Google Scholar
  17. (13).
    K. Przibram, Editor, Briefe zur Wellenmechanik, Springer Verlag Wien, 1963.Google Scholar
  18. (14).
    S.W. Hawking and G.F.R. Ellis, Large Scale Structure of Space-Time, Cambridge University Press, 1973.Google Scholar
  19. (15).
    K. Nomizu, Lie Groups and Differential Geometry, Publ.Math.Soc. Japan, 1956.Google Scholar
  20. (16).
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, John Wiley, Interscience, New York, 1963.Google Scholar
  21. (17).
    A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Edizioni Cremonese, Roma 1962.Google Scholar
  22. (18).
    Y. Choquet-Bruhat, Géometrie differentielle et systèmes extérieurs, Dunod, Paris 1968.Google Scholar
  23. (19).
    S. Kobayashi, Theory of Connexions, Annali di Math. 43, 119 (1957).Google Scholar
  24. (20).
    H. Weyl, Z.f.Physik, 56, 330 (1929).Google Scholar
  25. (21).
    P.A. Carruthers, Spin and Isospin in Particle Physics, Gordon and Breach, New York 1973.Google Scholar
  26. (22).
    R. Geroch, J.Math.Phys. 9, 1739 (1968).Google Scholar
  27. (23).
    E. Cartan, Ann.Ec.Norm. 40, 325 (1922), Ann.Ec.Norm. 41, 1 (1924), and Legons sur la géometrie des espaces de Riemann, Gauthier-Villars, Paris 1951.Google Scholar
  28. (24).
    H. Flanders, Differential Forms, Academic Press, New York, 1963.Google Scholar
  29. (25).
    L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1926.Google Scholar
  30. (26).
    E. Cartan, Bull.Sc.Math.France 48, 294 (1924), Acta Math. 48, 1 (1926), Ann.of Math. 38, 1 (1937).Google Scholar
  31. (27).
    Ch. Ehresmann, Colloque de Topologie (espaces fibrés), Bruxelles 1950, p. 29.Google Scholar
  32. (28).
    R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, J. Wiley, New York 1974.Google Scholar
  33. (29).
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.Google Scholar
  34. (30).
    W. Drechsler, Group Contraction in a Fiber Bundle with Cartan Connexion, J.Math.Phys. (to be published).Google Scholar
  35. (31).
    W. Drechsler, tFortschr. der Physik, 23, 607 (1975).Google Scholar
  36. (32).
    W. Drechsler, Currents in a Theory of Strong Interactions Based on a Fiber Bundle Geometry, Found.of Phys. (to be published).Google Scholar
  37. (33).
    R. Takahashi, Bull.Soc.Math. France 91, 298 (1963).Google Scholar
  38. (34).
    W. Drechsler, Is the Probability Concept still Fundamental in a Theory of Elementary Particles? Phys.Letters 66B, 439 (1977).Google Scholar
  39. (35).
    P.A.M. Dirac, Ann.Math. 36, 657 (1935).Google Scholar
  40. (36).
    I.M. Gelfand, M.I. Graev and N.Ya. Vilenkin, Generalized Functions, Vol. 5, Chapter V, Academic Press, London 1966.Google Scholar
  41. (37).
    W. Drechsler, Lagrange Formulation for a Gauge Theory of Strong and Electromagnetic Interactions Defined on a Cartan Bundle, Preprint MPI-PAE/PTh 45/76, December 1976.Google Scholar
  42. (38).
    H. Bacry, Nuovo-Cimento 41, 222 (1966).Google Scholar
  43. (39).
    M. Bander and C. Itzykson, Rev.mod.Phys. 38, 330 (1966).Google Scholar
  44. (40).
    A. Böhm, Phys.Rev. 145, 1212 (1966).Google Scholar

Copyright information

© Springer-Verlag 1977

Personalised recommendations