Decidabilite de la finitude des demi-groupes de matrices

  • G. Jacob
Vorträge In Der Reihenfolge Des Programms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 48)


Finite Semigroup Counting Automaton Nous Pouvons Nous Donnons Syntactic Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BERSTEL J. Contribution à l'étude des propriétés arithmétiques des langages formels; Thèse Sc. Math., Univ. Paris VII, 1972.Google Scholar
  2. [2]
    CHOMSKY N., SCHUTZENBERGER M.P., The algebraic theory of context-free languages; in “Computer programming and formal languages” (P. Brafford & D. Hirschberg, edit.) p. 118–161, North-Holland, Amsterdam, 1963.Google Scholar
  3. [3]
    EILENBERG S. Automata, languages and machines; Academic Press, vol. A (1974) New-York, London.Google Scholar
  4. [4]
    FLIESS M. Deux applications de la représentation matricielle d'une série rationnelle non commutative; J. Algebra 19 (1970) 344–353CrossRefGoogle Scholar
  5. [5]
    FLIESS M. Séries reconnaissables et algébriques; Bull. Sc. Math. 94 (1970)Google Scholar
  6. [6]
    FLIESS M. Matrices de Hankel; J. Math. Pures Appl. 53 (1974)Google Scholar
  7. [7]
    JACOB G. Sur un théorème de Shamir; Inf. Control, 27 (1975) 218–261.CrossRefGoogle Scholar
  8. [8]
    JACOB G. Un théorème de factorisation des produits d'endophismes de KN; J. Algebra, à paraître.Google Scholar
  9. [9]
    JACOB G. Un algorithme calculant le cardinal des demi-groupes de matrices sur un corps commutatif; Theoretical Computer Science, à paraître.Google Scholar
  10. [10]
    JACOB G. La finitude des représentations linéaires est décidable; soumis au Journal of Algebra.Google Scholar
  11. [11]
    KOPYTOV Solvability of the problem of occurence in finitely generated soluble groups of matrices over the field of algebraic numbers; Algebra and logic, 7 (1968) 388–393. Translated from Russian.Google Scholar
  12. [12]
    MC NAUGHTON R. and ZALCSTEIN Y. The Burnside théorem for semigroups; J. Algebra 34 (1975) 292–299.CrossRefGoogle Scholar
  13. [13]
    NIVAT M. Transductions des langages de Chomsky; Ann. Inst. Fourier, 18 (1968) 339–456.Google Scholar
  14. [14]
    RAMSEY F. P. On a problem of formal logic; Proc. London Math. Soc. 30 (1930) 264–286.Google Scholar
  15. [15]
    SALOMAA A. Formal Languages; Acad. Press, (1973) New-York, London.Google Scholar
  16. [16]
    SCHUTZENBERGER M.P. On the definition of a family of automata; Inf. Control 4 (1961) 245–270.CrossRefGoogle Scholar
  17. [17]
    SCHUTZENBERGER M.P. On a theorem of Jungen; Proc. Amer. Math. Soc. 13 (1962) 885–890.Google Scholar
  18. [18]
    SCHUTZENBERGER M.P. Finite counting automata; Inf. Control 5 (1962) 91–107.CrossRefGoogle Scholar
  19. [19]
    SHAMIR E. A representation theorem for algebraic and contextfree power series in non commuting variables; Inf. Control 6 (1963) 246–264.CrossRefGoogle Scholar
  20. [2]
    SOITTOLA M. Positive rational sequences; Theoretical Computer Science, 2 (1976) 317–322.CrossRefGoogle Scholar
  21. [21]
    ZALCSTEIN Y. Syntactic semigroups of some classes of starfree languages; in Automata, Languages and Programming (Nivat M. edit.) North-Holland, Amsterdam, 1973.Google Scholar
  22. [22]
    MANDEL A. and SIMON I. On Finite Semigroups of Matrices; Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, Brasil. part of the results of this paper were presented at the IV Escola de Algebra, Sao Paulo, July 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • G. Jacob

There are no affiliations available

Personalised recommendations