Eine Klasse geordneter Monoide und ihre Anwendbarkeit in der Fixpunktsemantik

  • V. Lohberger
Vorträge In Der Reihenfolge Des Programms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 48)


Taking ordered monoids, which obey some extra axioms that concern the relation-ship between order relation and monoid structure we topologize them by means of the order relation and investigate the resulting spaces. They turn out to be fixpoint-spaces.

Proceeding to function spaces in which the elements are not only monoid operable, that means they can be added, but also structurable, that means components of elements can be selected and compound elements can be contructed from simpler ones, the axiomatic properties of the original spaces turn over to the latter ones; the algebraic operations are continous and thus fixpoint-equations with these operations can be solved.


Monoid Structure Axiomatic Property Extra Axiom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (/E 76/).
    Ehrich, H.-D.: Outline of an algebraic theory of structured objects. Proc. 3rd International Colloquium on Automata, Languages, and Programming, Edingburgh University Press, Edinburgh 1976.Google Scholar
  2. (/I 75/).
    Indermark, K.: Gleichungsdefinierbarkeit in Relationalstrukturen, Bericht Nr. 98, Gesellschaft für Mathematik und Datenverarbeitung, 1975.Google Scholar
  3. (/L 74/).
    Loeckx, J.: The fixpoint-theorem and the Principle of Computational Induction. Bericht A 74/08 Universität Saarbrücken, Fachbereich Informatik, 1974.Google Scholar
  4. (/Lo 76/).
    Lohberger, V.: Axioms for Ordered Monoids that are Fixpoint-Spaces According to a suitable Topology. TR 28/76 Abteilung Informatik, Universität Dortmund, July 1976.Google Scholar
  5. (/Lo76.b/)
    Lohberger, V.: Spaces of Structured Objects and Applications to the Semantics of Data Structures. TR 36/76 Abteilung Informatik, Universität Dortmund, in Prep.Google Scholar
  6. (/S 72/).
    Scott, D.: Continous Lattices. In: Topology, algebraic Geometry and Logic. Lecture Notes in Mathematics, Nr. 274. Springer, Berlin 1972.Google Scholar
  7. (/S 75/).
    Scott, D.: Data Types and Lattices. In: Müller, G.H. (ed): Proceedings of the International Summer Institute and Logic Colloquium, Kiel 1974, Springer Lecture Notes 499, Berlin 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • V. Lohberger

There are no affiliations available

Personalised recommendations