Physical instability and weather prediction — two examples using a new finite difference scheme

  • J. Steppeler
Part of the Lecture Notes in Physics book series (LNP, volume 59)


Finite Difference Scheme Rigid Boundary Spatial Smoothing Grid Interval Taylor Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BURSTEIN, S.Z., and MIRIN, A.A. (1970), J.Comp.Phys. 5, 547–571.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    CROWLEY, W.P. (1968), Mon.Wea.Rev. 96, 1–11.Google Scholar
  3. 3.
    RICHTMYER and MORTON, “Difference Methods for Initial Value Problems”, Interscience, New York, 1967.Google Scholar
  4. 4.
    RUSANOV, V.V. (1970), J.Comp.Phys. 5, 507–516.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    STEPPELER, J. (1975), J.Comp.Phys. 19, 390–403.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    STEPPELER, J. (1975), Beitr.Phys.Atm. 48, 278–289.Google Scholar
  7. 7.
    STEPPELER, J. (1976), “The Application of the Second and Third Degree ijethods”, to appear in J.Comp.Phys.Google Scholar
  8. 8.
    STEPPELER, J. (1976), Beitr.Phys.Atm. 49, 43–54.MATHGoogle Scholar
  9. 9.
    STEPPELER, J. (1976), “A Baroclinic Model Using a High Accuracy Horizontal discretization”, submitted to Beitr.Phys.Atm.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Steppeler
    • 1
  1. 1.Deutscher WetterdienstOffenbachWest-Germany

Personalised recommendations