Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 59))

  • 143 Accesses

Abstract

A numerical procedure has been described for unsteady chemically reacting flowfields where vastly different time scales can be applied to the fluids and chemistry thereby providing for efficient computation. The fluids operator correctly models the convection with explicit differences, while the split reaction terms can be solved by an O. D. E. technique best suited to its particular problem. A major difficulty with numerically “capturing” shocks has been identified for reacting flowfields where the chemical rate terms are strongly dependent upon local temperature. A shock-fitting procedure was demonstrated which alleviates this problem and has proven to work well in a series of severe tests of the procedure. All of the numerical procedures discussed have potential for application to multi-dimensional problems and complex reaction schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forman A. Williams, Combustion Theory, Addison-Wesley Publishing Co., Reading, Mass., 1965.

    Google Scholar 

  2. I. Glassman, F. L. Dryer, and R. Cohen, Aero and Mechanical Sciences Report No. 1223, Guggenheim Labs., Princeton Univ., April 1975.

    Google Scholar 

  3. S. Gordon and B. J. McBride, NASA SP-273, 1971.

    Google Scholar 

  4. Ascher H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. II, The Ronald Press Co., N.Y., 1954.

    Google Scholar 

  5. R. W. MacCormack, AIAA Paper 69-354, 1967.

    Google Scholar 

  6. P. Kutler, “Computation of Three-Dimensional, Inviscid Supersonic Flows,” von Karman Institute for Fluid Dynamics, Lecture Series 63, Feb. 11–15, 1974.

    Google Scholar 

  7. A. W. Rizzi and H. E. Bailey, AIAA 2nd Computational Fluid Dynamics Conf. (Proceedings), Hartford, Conn., June 19–20, 1975.

    Google Scholar 

  8. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Adriaan I. van de Vooren Pieter J. Zandbergen

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Sanders, B.R., Dwyer, H.A. (1976). Numerical modeling of unsteady flow fields with detonation. In: van de Vooren, A.I., Zandbergen, P.J. (eds) Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28 – July 2, 1976 Twente University, Enschede. Lecture Notes in Physics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08004-X_343

Download citation

  • DOI: https://doi.org/10.1007/3-540-08004-X_343

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08004-6

  • Online ISBN: 978-3-540-37548-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics