A numerical method for calculating steady flow past a cylinder

  • S. C. R. Dennis
Part of the Lecture Notes in Physics book series (LNP, volume 59)


Drag Coefficient Circular Cylinder Stream Function Outer Region Outer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chang, I.D. J. Math. Mech. 10, 811 (1961).MATHMathSciNetGoogle Scholar
  2. Dennis, S.C.R. and Chang, G.Z. J. Fluid Mech. 42, 471 (1970).MATHCrossRefADSGoogle Scholar
  3. Dennis, S.C.R. and Chang, G.Z. Phys. Fluids Suppl. II 12, II–88 (1969).MATHGoogle Scholar
  4. Dennis, S.C.R. Lecture Notes in Physics 19, 120 (1973).MATHMathSciNetCrossRefADSGoogle Scholar
  5. Filon, L.N.G. Proc. Roy. Soc. A113, 7 (1926).ADSGoogle Scholar
  6. Gradshteyn, I.S. and Ryzhik, I.M. Tables of Integrals, Series, and Products 4th. Ed., Academic Press, New York, 1965, p. 1033.Google Scholar
  7. Imai, I. Proc. Roy. Soc. A208, 487 (1951).MathSciNetADSGoogle Scholar
  8. Kawaguti, M. J. Phys. Soc. Japan 8, 747 (1953).MathSciNetADSCrossRefGoogle Scholar
  9. Keller, H.B. and Takami, H. Numerical Solutions of Nonlinear Differential Equations (Ed. D. Greenspan), John Wiley, New York, 1966, p.115.Google Scholar
  10. Nieuwstadt, F. and Keller, H.B. Computers & Fluids 1, 59 (1973).MATHMathSciNetCrossRefGoogle Scholar
  11. Takami, H. and Keller, H.B. Phys. Fluids Suppl. II 12, II–51 (1969).MATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • S. C. R. Dennis
    • 1
  1. 1.Department of Applied MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations