A random choice method in gas dynamics

  • Alexandre Joel Chorin
Part of the Lecture Notes in Physics book series (LNP, volume 59)


Riemann Problem Fractional Step Choice Solution Discontinuous Initial Data Reynolds Number Restriction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Z. Burstein, AIAA Journal, 2, 211 (1964).MathSciNetGoogle Scholar
  2. [2]
    A. J. Chorin, Random choice solution of hyperbolic systems, to appear in J. Comp. Phys.Google Scholar
  3. [3]
    A. J. Chorin, Random choice methods with applications to reacting gas flow, to appear.Google Scholar
  4. [4]
    R. Courant and K. 0. Friedrichs, Supersonic flow and shock waves, Interscience (1948).Google Scholar
  5. [5]
    J. Glimm, Comm. Pure Appl. Math., 18, 697 (1965).MATHMathSciNetGoogle Scholar
  6. [6]
    S. K. Godunov, Mat. Sbornik, 47, 271 (1959).MATHMathSciNetGoogle Scholar
  7. [7]
    A. Harten, AEC R&D Report C00-3077-50, NYU (1974).Google Scholar
  8. [8]
    P. D. Lax, SIAM Review, 11, 7 (1969).MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    R. D. Richtmyer and K. W. Morton, Finite difference methods for initial value problems, Interscience (1967).Google Scholar
  10. [10]
    A. Rizzi and H. E. Bailey, Conf. on Aerodynamics and Advanced Computers, NASA SP-347, p. 327 (1975).Google Scholar
  11. [11]
    B. K. Swartz, in Math. Aspects of Finite Elements in Partial Differential Equations, Academic Press (1974).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Alexandre Joel Chorin
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations