Numerical investigation of rarefied gas flows by a statistical particle-in-cell method

  • O. M. Belotserkovskii
  • V. E. Yanitskii
Part of the Lecture Notes in Physics book series (LNP, volume 59)


Computational Fluid Dynamics Boltzmann Equation Convective Derivative Molecular Chaos Calculational Stage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.M.Belotserkovskii, Yu.M.Davidov; The use of unsteady methods of “large particle” for problems of external aerodynamics-Preprint Vych. Ts. AN USSR (1970), 85pGoogle Scholar
  2. 2.
    O.M.Belotserkovskii, Yu,M.Davidov; A non-stationary “coarse particle” method for gas dynamical computations-Zh.Vych.Mat.i,Mat.Fiz., v. 11, N 1, (1971), 182–207.MATHGoogle Scholar
  3. 3.
    F.H.Harlow; The particle-in-cell Computing Method for Fluid Dynamics-Methods in Computational Physics, v. 3, Ed. by Berni Alder, Sidney Fernbach, Manuel kotenberg, Academic Press, N.y., (1964).Google Scholar
  4. 4.
    O.M.Belotserkovskii, V.A.Gushchin, V.V.Shchennikov; Method of splitting applied to the solution of problems of viscous incompressible fluid dynamics-Zh.Vych.Mat.i Mat.Fiz.,v. 15, N 1, (1975), 197–207.MATHGoogle Scholar
  5. 5.
    O.M.Belotserkovskii; L.I.Severinov; The conservative “flow” method and the calculation of the flow of a viscous heat-conducting gas past a body of finite size-Zh.Vych.Mat. i Mat. Fiz.,v.13, N 2, (1973), 385–397MATHGoogle Scholar
  6. 6.
    V.E.Yanitsky; Use of Poisson's stochastic process to calculate the collision relaxation of a non-equilibrium gas-Zh.Vych.Mat.i Mat, Fiz., v. 13, N 2, (1973), 505–510.Google Scholar
  7. 7.
    V.E.Yanitsky; Application of random motion processes for modelling free molecular gas motion-Zh. Vych. Mat. i Mat. Fiz., v. 14, N 1, (1974), 259–262.Google Scholar
  8. 8.
    O.M.Belotserkovskii, V.E.Yanitsky; Statistical “particle-in-cell” method for the solution of the problem of rarefied gas dynamic,.-Zh.Vych.Mat. i Mat. Fiz., v. 15, N 5, (1975), 1195–1208 (part I) and N 6 (1975), 1553–1567 (part II).MATHGoogle Scholar
  9. 9.
    G.A.Bird; The velocity distribution function within a shock wave-J.Fluid Mech., v.30, p. 3, (1967), 479–487.CrossRefGoogle Scholar
  10. 10.
    G.A.Bird; Direct simulation and the Boltzmann equation-Phys. Fluids, v. 13, N 11, (1970), 2677–2681.CrossRefGoogle Scholar
  11. 11.
    M.Kats; Probability and related topics in Physical Sciences-published by Izd. “Mir”, (1965).Google Scholar
  12. 12.
    F.G.Cheremisin; Numerical solution of the Boltzmann kinetic equation for one-dimensional stationary gas motion-Zh.Vych.Mat. i Mat. Fiz., v. 10, N 3, (1970), 654–665.MATHGoogle Scholar
  13. 13.
    V.A.Rikov; One averaging the Boltzmann kinetic equation with respect to a transverse velocity for the case of one-dimensional gas motion-Izv. Ac. Nauk SSSR, Mech.jidkosti i gaza, N 4, (1969), 120–127.Google Scholar
  14. 14.
    O.Mi.Belotserkovskii; Computational experiment: direct numerical simulation of complex gas dynamics flow on the basis of Euler, Navie-Stokes and Boltzmann models-The annual Lecture Series 87 on “Computational Fluid Dynamics”, von Karman Institute for Fluid Dynamics, Brussels, March 15–19, 1976, 89 P.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • O. M. Belotserkovskii
    • 1
  • V. E. Yanitskii
    • 1
  1. 1.Computing CenterAcademy of Sciences USSRMoscowUSSR

Personalised recommendations