Advertisement

Methods and problems in the calculation of transonic flows

  • M. G. Hall
Half-hour Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 59)

Keywords

Shock Wave Computational Fluid Dynamics Potential Flow Mesh Point Oblique Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballhaus, W.F.: “Some recent progress in transonic flow computations”, VKI Lecture Series 87 on Computational Fluid Dynamics, 15–19 March 1976Google Scholar
  2. 2.
    Jameson, A.:,“Transonic flow calculations”, VKI Lecture Series 87 on Computational Fluid Dynamics, 15–19 March 1976Google Scholar
  3. 3.
    Oswatitsch, K. and Rues, D. (Editors): Symposium Transsonicum II, Springer-Verlag (1976)Google Scholar
  4. 4.
    MacCormack, R.W., Rizzi, A.W. and Inouye, M.: “Steady supersonic flowfields with embedded subsonic regions”, Computational Methods and Problems in Aeronautical Fluid Dynamics (Proceedings of IMA Conference, 1974) Academic Press, 424–447 (1976)Google Scholar
  5. 5.
    Beam, R.M. and Warming, R.F.: “An implicit finite-difference algorithm for hyperbolic systems in conservation-law form”, (to be published)Google Scholar
  6. 6.
    Rizzi, A.W.: “Transonic solutions of the Euler equations by the finite volume method” Symposium Transsonicum II, Springer-Verlag, 567–574 (1976)Google Scholar
  7. 7.
    Lock, R.C.: “Research in the UK on finite difference methods for computing steady transonic flows”, Symposium Transsonicum II, Springer-Verlag, 457–486 (1976)Google Scholar
  8. 8.
    Jameson, A.: Comm. Pure and Applied Maths., Vol.27, 283–309 (1974)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Murman, E.M.: “Analysis of embedded shock waves calculated by relaxation methods”, Proceedings of AIAA Computational Fluid Dynamics Conference, 27–40 (1973)Google Scholar
  10. 10.
    Jameson, A.: “Transonic potential flow calculations using conservation form”, Proceedings AIAA 2nd Computational Fluid Dynamics Conference, 148–161 (1975)Google Scholar
  11. 11.
    South, J.C. and Brandt, A.: ICASE, NASA Langley, Rep. 76-8 (1976)Google Scholar
  12. 12.
    Martin, E.D.: “A fast semidirect method for computing transonic aerodynamic flows”, Proceedings AIAA 2nd Computational Fluid Dynamics Conference, 162–174 (1975)Google Scholar
  13. 13.
    Bauer, F. and Korn, D.: “Computer simulation of transonic flow past airfoils with boundary layer correction”, Proceedings AIAA 2nd Computational Fluid Dynamics Conference, 184–204 (1975)Google Scholar
  14. 14.
    Salas, M.D.: “The anatomy of floating shock fitting”, Proceedings AIAA 2nd Computational Fluid Dynamics Conference, 47–54 (1975)Google Scholar
  15. 15.
    Carlson, L.A.: NASA CR-2577 (1975)Google Scholar
  16. 16.
    Albone, C.M., Hall, M.G. and Joyce, G.: “Numerical solutions for transonic flows past wing-body combinations”, Symposium Transsonicum II, Springer-Verlag, 541–548 (1976)Google Scholar
  17. 17.
    Lomax, H. and Steger, J.L.: Ann. Rev. Fluid Mech., Vol.7, 63–88 (1975)MATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. G. Hall
    • 1
  1. 1.Royal Aircraft Establishment FarnboroughHantsEngland

Personalised recommendations