Advertisement

Some recent developments in computation of viscous flows

  • O. R. Burggraf
Half-hour Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 59)

Keywords

Reynolds Number High Reynolds Number Separation Point External Flow Reattachment Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stewartson K., and Williams, P. G., Proc. Roy. Soc. A. 312, 181–206 (1969).MATHADSCrossRefGoogle Scholar
  2. 2.
    Neiland, V., Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 4 (1969).Google Scholar
  3. 3.
    Jenson, R., Burggraf, O., and Rizzetta, D., Proc. 4th Int. Conf. on Numerical Methods in Fluid Dyn., Lecture Notes in Physics, Vol. 35, Springer-Verlag (1975).Google Scholar
  4. 4.
    Rosenhead, L., Laminar Boundary Layers, p. 211, Clarendon Press, Oxford (1963).MATHGoogle Scholar
  5. 5.
    Rizzetta, D., Ph.D. Dissertation, The Ohio State University, Columbus, Ohio (1976).Google Scholar
  6. 6.
    Neiland, V., Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 19–24 (1971).Google Scholar
  7. 7.
    Stewartson, K., and Williams, P. G., Mathematika 20, 98–108 (1973).MATHCrossRefGoogle Scholar
  8. 8.
    Williams, P. G., Proc. 4th Int. Conf. on Numerical Methods in Fluid Dyn., Lecture Notesin Physics, Vol. 35, Springer-Verlag (1975).Google Scholar
  9. 9.
    Burggraf, O., Proc. AGARD Symp. on Flow Separation, Göttingen, Germany, AGARD-CP-168 (1975).Google Scholar
  10. 10.
    Werle, M. J., and Vatsa, V. N., AIAA J. 12, 1491–1497 (1974).MATHADSCrossRefGoogle Scholar
  11. 11.
    Carter, J. E., NASA TR-R-385 (1972).Google Scholar
  12. 12.
    Lewis, J. E., Kubota, T., and Lees, L., AIAA J. 6, 7–14 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    Burggraf, O. R., Werle, M. J., Rizzetta, D., and Vatsa, V. N., “Effect of Reynolds Number on Laminar Separation of a Supersonic Stream,” paper in preparation. (1976).Google Scholar
  14. 14.
    van Driest, E. R., J. Aero. Sci. 19, 801–812 (1952).Google Scholar
  15. 15.
    van Driest, E. R., and Boison, J. C., J. Aero. Sci. 24, 885–899 (1957).Google Scholar
  16. 16.
    Diaconis, N. S., Jack, J. R., and Wisniewski, R. J., NACA TN 3920 (1957).Google Scholar
  17. 17.
    Burggraf, O., WADD-TR-59-708, Aero. Res. Lab., Wright Air Dev. Center, Dayton, Ohio, (1959).Google Scholar
  18. 18.
    Weinbaum, S., AIAA J. 14, 767–775 (1976).MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Chapman, D., NACA TN 3792 (1956).Google Scholar
  20. 20.
    Messiter, A. F., Hough, G., and Feo, A., J. Fluid Mech. 60, 605–624 (1973).MATHCrossRefADSGoogle Scholar
  21. 21.
    Nielsen, J., Lynes, L., and Goodwin, F., USAF FDL TR-65-107 (1965).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • O. R. Burggraf
    • 1
  1. 1.Department of Aeronautical EngineeringThe Ohio State UniversityColumbus

Personalised recommendations