Turbulence and transition: A progress report

  • Steven A. Orszag
One-hour Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 59)


Galerkin Approximation Large Reynolds Number Outflow Boundary Boundary Layer Transition Homogeneous Isotropic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, Cambridge.Google Scholar
  2. Gottlieb, D. & Orszag, S.A. (1976) Theory of Spectral Methods for Mixed Initial-Boundary Value Problems. To be published.Google Scholar
  3. Grosch, C. E. & Orszag, S. A. (1976) Numerical solution of problems in unbounded regions: coordinate transforms. Submitted to J. Comp. Phys. Google Scholar
  4. Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G., (1974) Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 66, 417–444.zbMATHCrossRefADSGoogle Scholar
  5. Kells, L. & Orszag, S. A. (1976) Randomness of low-order models of twod-imensional inviscid dynamics. Submitted to Phys. Fluids. Google Scholar
  6. Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. (1962) The threedimensional nature of boundary-layer instability. J. Fluid Mech. 12, l–34.CrossRefGoogle Scholar
  7. Kraichnan, R. H. (1967) Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417–1423.CrossRefADSGoogle Scholar
  8. Kraichnan, R. H. (1971) An almost-Markovian Galilean invariant turbulence model. J. Fluid Mech. 47, 513–524.zbMATHCrossRefADSGoogle Scholar
  9. Orszag, S. A. & Israeli, M. (1974) Numerical simulation of viscous incompressible flows. Ann. Rev. Fluid Mech. 6, 281–318.zbMATHCrossRefADSGoogle Scholar
  10. Orszag, S. A. & Israeli, M. (1976) To be published.Google Scholar
  11. Orszag, S. A. (1976a) Design of large hydrodynamics codes. Proc. Third ICASE Conf. on Scientific Computing, Academic.Google Scholar
  12. Orszag, S. A. (1976b) Statistical theory of turbulence. Fluid Dynamics —Dynamique des Fluides, ed. R. Balian and J.-L. Peube, Gordon & Breach.Google Scholar
  13. Saffman, P. G. (1971) A note on the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Stud. in Appl. Math., 50, 377–383.zbMATHGoogle Scholar
  14. Hald, O. (1976) Constants of motion in models of two-dimensional turbulence. Phys. Fluids 19, 914–915.zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Steven A. Orszag
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations