Advertisement

Some methods of resolution of free surface problems

  • Jacques-Louis Lions
One-hour Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 59)

Keywords

Free Surface Variational Inequality Free Boundary Problem Transonic Flow Open Channel Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. BAIOCCHI Sur un problème à frontière libre... C.R. Ac.Sc. Paris, t. 273, (1971), PP. 1215–1217.Google Scholar
  2. [2]
    Free boundary problems in the theory of fluid flow through porous media. Proceedings I.C.M. Vancouver, Vol. 2, pp. 237–243.Google Scholar
  3. [3]
    Quasi variational inequalities in free boundary problems arising from hydraulics. IUTAM-IMU Symposium on Applications of Methods of Functional Analysis to problems of Mechanics. Marseille, Sept.1975.Google Scholar
  4. [4]
    C.R.Ac. Sc., to appear (1976).Google Scholar
  5. [1]
    Etude numérique du comportement d'un fluide de Bingham. LABORIA Report No. 42 (1974).Google Scholar
  6. [1]
    D. BEGIS, R. GLOWINSKI Applications de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthode de résolution des problèmes approchés. Applied Mathematics and Optimization, Vol. 2, (1971), pp. 130–169.MathSciNetGoogle Scholar
  7. [1]
    A. BENSOUSSAN, M. GOURSAT, J.L. LIONS Note C.R.Ac.Sc. Paris t. 276 (1973), pp. 1279–1284.MATHMathSciNetGoogle Scholar
  8. [1]
    , J.L. LIONS Problèmes de temps d'arrêt optimal et Inéquations variationnelles paraboliques. Applicable Analysis, V 3, pp. 267–294, (1972).MathSciNetCrossRefGoogle Scholar
  9. [2]
    Optimal stopping times, Vol.1. Book, to appear.Google Scholar
  10. [3]
    Notes C.R.Ac.Sc. Paris (1973) t. 276, pp. 1189–1192, and pp. 1411–1415.Google Scholar
  11. [4]
    Optimal stopping times and Impulse control, Vol. 2, Book to appear.Google Scholar
  12. M. BERCOVIER [1]
    The link between first order mixed quadrilateral finite elements.. The Hebrew University of Jerusalem. Technical Note 75/MB2, Nov.1975.Google Scholar
  13. A.E. BERGER [1]
    The truncation method for the solution of a class of variational inequalities. R.A.I.R.O. (1976).Google Scholar
  14. A.E. BERGER and R.S. FALK [1]
    An error estimate for the truncation method for the solution of a parabolic variational inequality. Séminaires IRIA, (1975).Google Scholar
  15. M.S. BERGER and L.E. FRAENKEL [1]
    A global theory of steady vertex rings in an ideal fluid. Acta Mathematics, (1974), pp. 13–51.Google Scholar
  16. [2]
    Applications of the calculus of variations in the large to free boundary problems of continuum Mechanics. IUTAM/IMU Symposium on Applications of Methods of Functional Analysis to problems of Mechanics. Marseille, September 1975.Google Scholar
  17. J.F. BOURGAT and G. DUVAUT [1]
    Calcul numérique de l'écoulement avec ou sans sillage autour d'un profil bidimensionnel symétrique et sans incidence. LABORIA Report No. 145, December 1975.Google Scholar
  18. H. BREZIS [1]
    Nouveaux théorèmes de régularité... Rencontre Phys. Mathématique Strasbourg. 1970.Google Scholar
  19. H. BREZIS and G. DUVAUT [1]
    Ecoulements avec sillage... C.R.Ac.Sc. (1973), pp. 875–878.Google Scholar
  20. H. BREZIS and G. STAMPACCHIA [1]
    Une nouvelle méthode pour l'étude d'écoulements stationnaires. C.R.Ac.Sc. t. 276 (1973), pp. 129–132.Google Scholar
  21. J. CEA[1]
    Une méthode numérique pour la recherche d'un domaine optimal. Proc. Conference on Optimization. I.F.I.P. Nice (1975).Google Scholar
  22. [2]
    Proc. Colloquium Rome (1975).Google Scholar
  23. D. CHENAIS [1]
    On the existence of a solution in a domain identification problem. J.M.M.A. (1975), 52.Google Scholar
  24. V. COMMINCIOLI. [1]
    A comparison of algorithms for some free boundary problems. Report of L.A.N. No. 79, Pavia, 1975.Google Scholar
  25. M. CROUZEIX [1]
    Résolution numérique des équations de Stokes et de Navier-Stokes stationnaires. Cahier IRIA No. 12 (1974), pp. 13–244.Google Scholar
  26. M. CROUZEIX and P.A. RAVIART [1]
    Conforming and non-conforming finite element methods for solving the stationary Stokes equations.Google Scholar
  27. II. DANILJUK[1]
    On a class of functional with variable domain of integration. In Springer-Verlag. Lecture Notes in Computer Science 40 (1976).Google Scholar
  28. A. DERVIEUX and B. PALMERIO [1]
    Une formule de Hadamard dans les problèmes d'optimal design. In Springer-Verlag. Lecture Notes in Computer Sciences 40 (1976).Google Scholar
  29. G. DUVAUT [1]
    C.R.Ac.Sc. Paris, t. 276 (1973), pp. 1461–1463.Google Scholar
  30. [2]
    Report Universidade Federal Rio-de-Janeiro, 1975.Google Scholar
  31. G. DUVAUT and J.L. LIONS [1]
    G. DUVAUT and J.L. LIONS [1] Les Inéquations en Mécanique et en Physique. Dunod. 1972 (English translation, Springer, 1976).Google Scholar
  32. R.S. FALK[1]
    R.S. FALK[1] Error estimates for the approximation of a class of Variational Inequalities. Math. of Computation. 28 (128), (1974), pp. 963–971.MATHMathSciNetGoogle Scholar
  33. [2]
    Approximation of an elliptic boundary value problem with unilateral constraints. R.A.I.R.O. R.2.(1975), pp. 5–12.Google Scholar
  34. M. FORTIN [1]
    Thesis, Paris, University of Paris VI (1974).Google Scholar
  35. M. FREMOND [1]
    Frost propagation in porous media. Int. Conference on Comp. Methods in non-linear Mechanics. Austin, Texas (1974).Google Scholar
  36. P.R. GARABEDIAN and M. SCHIFFER [1]
    P.R. GARABEDIAN and M. SCHIFFER [1] Convexity of domain functionals. J. d'Analyse Math. 3 (1953), pp. 246–344.MathSciNetGoogle Scholar
  37. R. GLOWINSKI, M. FORTIN and A. MARROCCO [1]
    To appear.Google Scholar
  38. R. GLOWINSKI, J.L. LIONS and R. TREMOLIERES [1]
    Analyse numérique des Inéquations Variationnelles. Vol. 1 et 2, Dunod, Paris (1976).Google Scholar
  39. R. GLOWINSKI, J. PERIAUX and 0. PIRONNEAU [1]
    Transonic flow simulation by the finite element method via optimal control. These Proceedings.Google Scholar
  40. R. GLOWINSKI and O. PIRONNEAU [1]
    R. GLOWINSKI and O. PIRONNEAU [1] Calcul d'écoulements transoniques par des méthodes d'éléments finis et de contrôle optimal. Proc. IRIA Symp. Dec.1975.Google Scholar
  41. J. HADAMARD [1]
    Leçon sur le calcul des variations. Gauthier Villars 1910 and Opere Omniae.Google Scholar
  42. M. HESTENES [1]
    M. HESTENES [1] Multiplier and Gradient Methods. J. of Optim. Theory and Applicat. Vol. 4, No. 5, 1969, pp. 303–320.MATHMathSciNetCrossRefGoogle Scholar
  43. D.H. HOITSMA Jr. [1]
    D.H. HOITSMA Jr. [1] Existence and Uniqueness of axisymmetric free boundary flows. C.P.A.M. XXVIII (1975), pp. 375–402.MathSciNetGoogle Scholar
  44. D.D. JOSEPH [1]
    D.D. JOSEPH [1] Domain perturbations: the Higher Order Theory of Infinitesiaml water waves. A.R.M.A. 51 (1974), pp. 295–303.Google Scholar
  45. D. KINDERLHEREN[1]
    D. KINDERLHEREN[1] Elliptic Variational Inequalities. Proceedings I.C.M. Vancouver 1974, (Vol.2), pp. 269–273.Google Scholar
  46. J.L. LIONS [1]
    Remarks on the theory of optimal control of distributed systems. Lectures at White Oaks, May 1976.Google Scholar
  47. [2]
    Sur quelques questions d'Analyse, de Mécanique et de Contrôle Optimal. Presses de l'Université de Montréal. Cours de la Chaire Aisenstadt. 1976.Google Scholar
  48. J.L. LIONS and G. STAMPACCHIA [1]
    J.L. LIONS and G. STAMPACCHIA [1] Variational Inequalities. C.P.A.M. XX (1967), pp. 493–519.MathSciNetGoogle Scholar
  49. V.N. MONAKOV [1]
    Free boundary problems for elliptic systems of equations. Vol. 1 and 2. Novosibirsk 1969.Google Scholar
  50. PP. MOSOLOV and V.P. MIASNIKOV [1]
    PP. MOSOLOV and V.P. MIASNIKOV [1] Variational methods in the theory of the fluidity of a viscous plastic medium. P.M.M. 29 (1965), pp. 468–492.MATHGoogle Scholar
  51. F. MURAT and J. SIMON [1]
    To appear.Google Scholar
  52. M.J. O'CARROLL [1]
    Variational principles for two-dimensional open channel flows. Proceedings Second International Symposium on Finite Elements Methods in Flow Problems. I.C.C.A.D., Genoa, 1976.Google Scholar
  53. M.J. O'CARROLL and H.T. HARRISON [1]
    Variational techniques for free streamline problems. Proceedings Second Int. Symposium on Finite Elements Methods in Flow Problems. I.C.C.A.D. Genoa 1976.Google Scholar
  54. L.V. OVSJANNIKOV [1]
    L.V. OVSJANNIKOV [1] To the shallow water theory foundation. Archives of Mechanics. 26 (1974), pp. 407–422.MATHMathSciNetGoogle Scholar
  55. B. PALMERIO and A. DERVIEUX [1]
    C.R.Ac.Sc. Paris (1975).Google Scholar
  56. O. PIRONNEAU [1]
    Thesis, Paris, University of Paris VI, 1976.Google Scholar
  57. [2]
    Optimisation de structures. Application à la Mécanique des Fluides. In Springer-Verlag. Lecture Notes in Economics and Mathematical Systems 107 (1974).Google Scholar
  58. [3]
    On optimum profiles in Stokes flow. J. Fluid Mechanics. 59 (1973),. pp. 117–128.Google Scholar
  59. [3]
    On optimum design in fluid mechanics. J. Fluid Mechanics, 64 (1974), pp. 97–111.CrossRefADSGoogle Scholar
  60. E. POLAK [1]
    Computational methods in optimization. Academic Press. 1971.Google Scholar
  61. M.J.D. POWELL[1]
    A method for non linear constraint in minimization problem. In Optimization, R. Fletcher Ed., Academic Press, 1969, pp. 283–298.Google Scholar
  62. W. PRAGER [1]
    Introduction to Mechanics of Continua. Ginn and Company. 1961.Google Scholar
  63. R.T. ROCKAFELLAR [1]
    Augmented Lagrange multiplier functions and duality in nonconvex programming.Google Scholar
  64. D.H. SATTINGER [1]
    On the free surface of a viscous fluid motion. To appear.Google Scholar
  65. R. TEMAM [1]
    On thetheory and numerical analysis of the Navier-Stokes equations North-Holland, 1976.Google Scholar
  66. [2]
    A non linear eigenvalue problem: the equilibrium shape of a confined plasma. Archive Rat. Mech. Analysis.Google Scholar
  67. F. THOMASSET [1]
    Application d'une méthode d'éléments finis d'ordre 1 à la résolution numérique des équations de Navier-Stokes. LABORIA Report No. 150 December 1975.Google Scholar
  68. A. TORELLI[1]
    A. TORELLI[1] Un problème à frontière libre d'évolution en hydraulique, C.R.Ac.Sc. 280 (1975), pp. 353–356.MATHMathSciNetGoogle Scholar
  69. A. TORELLI[2]
    A. TORELLI[2] Su un problema a frontiera libera di evoluzione. Boll. U.M.I.(4), 11 (1975), pp. 559–570.MATHMathSciNetGoogle Scholar
  70. [3]
    Su un problems non lineare con une condizione di evoluzione sulla frontiera. Ann. Mat. Pura ed Appl. 1976.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Jacques-Louis Lions
    • 1
  1. 1.College de FranceParis Cedex 05

Personalised recommendations