Transport properties of high density electron-hole plasmas at low temperatures

  • M. Glicksman
  • M. N. Gurnee
  • J. R. Meyer
Electron-hole Drops
Part of the Lecture Notes in Physics book series (LNP, volume 57)


Measurements of the photoconductivity of germanium single crystals as a function of electron-hole pair density show the effects of carrier-carrier scattering on the mobility, for sample temperatures in the range 48 – 300 K, and for densities up to 2 ×1018 cm−3. Calculations including the effects of carrier-carrier scattering but neglecting conduction band anisotropy appear to underestimate the effect of scattering on the mobilities, especially at the lower temperatures. At 2 K, the photoconductivity shows evidence for the formation of electron-hole drops at intermediate excitation levels.


Germanium Single Crystal Ambipolar Diffusion Length Initial Impurity Concentration Average Carrier Density Flash Lamp Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    L. W. Davies: Nature 194 (1962) 762.Google Scholar
  2. 2).
    V. M. Asnin and A. A. Rogachev: ZhETF Pis. Red. 7 (1968) 464 (JETP Lett.7 (1968) 360).Google Scholar
  3. 3).
    V. M. Asnin and A. A. Rogachev: ZhETF Pis. Red. 14 (1971) 494 (JETP Lett. 14 (1971) 338).Google Scholar
  4. 4).
    M. N. Gurnee, M. Glicksman and P. W. Yu: Solid State Commun. 11 (1972) 11.Google Scholar
  5. 5).
    A. Nakamura and K. Morigaki: Solid State Commun. 14 (1974) 41.Google Scholar
  6. 6).
    A. A. Patrin, M. Ryvkin, V. M. Salmanov and I. D. Yaroshetskii: Fiz. Tekhn. Poluprovod. 3 (1969) 449 (Sov. Phys.-Semicond. 3 (1969) 383).Google Scholar
  7. 7).
    Y. Nishina, T. Nakanomyo and T. Pukase: Proc. Xth Int. Conf. Physics of Semicond., ed. S. P. Keller, J. C. Hensel and F. Stern (Nat. Tech. Info. Serv., Springfield, Va., 1970) p.493.Google Scholar
  8. 8).
    Y. Miura and C. Horie: J. Phys. Soc. Japan 33 (1972) 1522.Google Scholar
  9. 9).
    J. Appel: Phys Rev. 122 (1961) 1760.Google Scholar
  10. 10).
    J. Appel: Phys. Rev. 125 (1962) 1815.Google Scholar
  11. 11).
    G. A. Thomas, T. M. Rice and J. C. Hensel: Phys. Rev. Lett. 33 (1974) 219.Google Scholar
  12. 12).
    W. Kaiser, R. J. Collins and H. Y. Fan: Phys. Rev. 91 (1953) 1380.Google Scholar
  13. 13).
    Ya. E. Pokrovskii and K. I. Svistunova: Fiz. Tverd. Tela 13 (1971) 2788 (Sov. Phys.-Solid State 13 (1972) 2334).Google Scholar
  14. 14).
    W. E. Pinson and R. Bray: Phys. Rev. 136 (1964) A1449.Google Scholar
  15. 15).
    V. M. Asnin, A. A. Rogachev and S. M. Ryvkin: Fiz. Tekhn. Poluprovod. 1 (1967) 1740 (Sov. Phys.-Semicond. 1 (1968) 1445).Google Scholar
  16. 16).
    T. Yao, K. Inagaki and S. Maekawa: Solid State Commun. 13 (1973) 533.Google Scholar
  17. 17).
    M. Neuberger: Group IV Semiconducting Materials (IFI/Plenum, New York, 1971) p.18–19.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Glicksman
    • 1
  • M. N. Gurnee
    • 1
  • J. R. Meyer
    • 1
  1. 1.Division of EngineeringBrown UniversityProvidence, R. I.U.S.A.

Personalised recommendations