Advertisement

Paradoxical violations of Koopmans' theorem, with special reference to the 3d transition elements and the lanthanides

  • Ricardo Ferreira
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 31)

Keywords

Ionization Energy Occupation Number Orbital Energy Energy Level Diagram Ligand Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strong, L. E.: Foreword to Ida Freund's “The Study of Chemical Composition”, Cambridge University Press, 1904; reprinted by Dover Publications, Inc., New York, 1968.Google Scholar
  2. 2.
    Jørgensen, C. K.: Topics Current Chem., 56, 1 (1975).CrossRefGoogle Scholar
  3. 3.
    Dewar, M. J. S.: “The Molecular Orbital Theory of Organic Chemistry”, New York: McGraw-Hill Inc., 1969, p. 191.Google Scholar
  4. 4.
    Jørgensen, C. K.: Modern Aspects of Ligand Field Theory. Amsterdam: North-Holland Publishing Co., 1971, pp. 471–510.Google Scholar
  5. 5.
    Linderberg, I., Öhrn, Y.: Propagators in Quantum Chemistry. New York: Academic Press, 1973.Google Scholar
  6. 6.
    Dewar, M. J. S.: Chem. in Britain, 11, 97 (1975).Google Scholar
  7. 7.
    Pauling, L.: In: Perpectives in Organic Chemistry, pp. 1–8 (A. Todd, Ed.), New York: Interscience, 1956. In this paper Pauling proffered the opinion that the resonance theory is an extension of the classical structural theory, rather than quantum-mechanical in character.Google Scholar
  8. 8.
    Shull, H.: J. Chem. Phys. 30, 1405 (1959); Allen, T. L., Shull, H.: J. Chem. Phys., 35, 1644 (1961).CrossRefGoogle Scholar
  9. 9.
    Levy, M., Stevens, W.J., Shull, H., Hagstrom, S.: J. Chem. Phys., 52, 5483 (1970).CrossRefGoogle Scholar
  10. 10.
    James, H. M., Coolidge, A. S.: J. Chem. Phys., 1, 825 (1933).CrossRefGoogle Scholar
  11. 11.
    Kekulé, A.: Ann. Chem. Pharm., 106, 129 (1858).Google Scholar
  12. 12.
    Mulliken, R. S.: Chem. Revs., 9, 347 (1931); Rev. Mod. Phys., 4, 1 (1932).CrossRefGoogle Scholar
  13. 13.
    Koopmans, T. A.: Physica, 1, 104 (1933).CrossRefGoogle Scholar
  14. 14.
    Jørgensen, C. K.: ref. (4), pp. 98–104.Google Scholar
  15. 15.
    Lorquet, J. C.: Rev. Mod. Phys., 32, 312 (1960).CrossRefGoogle Scholar
  16. 16.
    This vivid expression was suggested to me by Professor Jørgensen.Google Scholar
  17. 17.
    Bagus, P. S.: Phys. Rev., 139, A, 619 (1965).CrossRefGoogle Scholar
  18. 18.
    Löwdin, P. O.: Adv. Chem. Phys., 2, 207 (1959).Google Scholar
  19. 19.
    Clementi, E.: J. Chem. Phys., 38, 2248 (1963), 39, 175 (1963).CrossRefGoogle Scholar
  20. 20.
    Allen, L. C., Clementi, E., Gladney,:Rev. Mod. Phys., 35, 465 (1963).CrossRefGoogle Scholar
  21. 21.
    Siegbahn, K., Nordling, C., Johansson, G., Hedman, J., Hedén, P. F., Hamrin, K., Gelius, U., Bergmark, T., Werme, L. O., Manne, R., Baer, Y.: ESCA Applied to Free Molecules. Amsterdam: North-Holland Publishing Co., 1969.Google Scholar
  22. 22.
    Cade, P. E., Sales, K. D., Wahl, A. C.: J. Chem. Phys., 44, 1973 (1966).CrossRefGoogle Scholar
  23. 23.
    Connolly, J. W. D.: Int. J. Quant. Chem., 6, 201 (1972).CrossRefGoogle Scholar
  24. 24.
    Cederbaum, L. S., Hohlneicher, G., Niessen, W. von: Chem. Phys. Letters, 18, 503 (1973).CrossRefGoogle Scholar
  25. 25.
    Basch, H., Hollister, C., Moscowitz, J. W.: Chem. Phys. Letters, 6, 204 (1969).Google Scholar
  26. 26.
    Demuynck, J., Veillard, A., Wahlgren, U.: J. Am. Chem. Soc., 95, 5563 (1973).CrossRefGoogle Scholar
  27. 27.
    Evans, S., Green, J. C., Green, M. H. L., Orchard, A. F., Turner, D. W.: Disc. Faraday Soc., 47, 112 (1969).CrossRefGoogle Scholar
  28. 28.
    Coutière, M.M., Demuynck, J., Veillard, A.: Theoret. Chim. Acta, 27, 281 (1972).CrossRefGoogle Scholar
  29. 29.
    Evans, S., Green, M. H. L., Jewitt, B., Orchard, A. F., Pygall, C. F.: Trans. Faraday Soc. II, 68, 1847 (1969); the 6.9 eV band was attributed to the e2g electron and the band at 8.7 eV was assigned to the e1u electron.Google Scholar
  30. 30.
    Baerends, E. J., Ros, P.: Chem. Phys. Letters, 23, 391 (1973); SCF-Xα values: \(I_{e_{2g} } = 6.7{\text{ eV}}\) and \(I_{e_{1_u } } = 8.1{\text{ eV}}\).Google Scholar
  31. 31.
    Hand, R. W., Hunt, W. J., Schaefer III, H. F.: J. Am. Chem. Soc., 95, 4517 (1973).CrossRefGoogle Scholar
  32. 32.
    Jørgensen, C. K.: Oxidation Numbers and Oxidation States. Berlin-Heidelberg-New York.: Springer, 1969.Google Scholar
  33. 33.
    Demuynck, J., Veillard, A.: Theoret. Chim. Acta, 28, 241 (1973).CrossRefGoogle Scholar
  34. 34.
    Evans, S., Hamnett, A., Orchard, A.F., Lloyd, D.R.: Disc. Faraday Soc., 54, 227 (1973).Google Scholar
  35. 35.
    Wertheim, G. K., Rosencwaig, A., Cohen, R. L., Guggenheim: Phys. Rev. Letters, 27, 505 (1971).CrossRefGoogle Scholar
  36. 36.
    Jørgensen, C. K.: Chimia, 25, 213 (1971); ibid., 26, 252 (1972).Google Scholar
  37. 37.
    Fukui, K.: Theory of Orientation and Stereo selection. Berlin-Heidelberg-New York: Springer, 1970.Google Scholar
  38. 38.
    Jørgensen, C. K.: Chimia, 27, 203 (1973).Google Scholar
  39. 39.
    Campagna, M., Bucher, E., Wertheim, G. K, Buchanan, D. N. E., Longinotti, L. C.: Proc. 11th Rare-Earth Research Conf, Traverse City, Michigan, (1974), p. 810.Google Scholar
  40. 40.
    Jørgensen, C. K.: Structure and Bonding, Vol. 22, p. 49. Berlin-Heidelberg-New York. Springer 1975.Google Scholar
  41. 41.
    Jørgensen, C. K.: Chimia, 28, 6 (1974).Google Scholar
  42. 42.
    Jørgensen, C. K.: Adv. Quant. Chem., 8, 137 (1974).CrossRefGoogle Scholar
  43. 43.
    Héden, P. O., Löfgren, H., Hagström, S.B.M.: Phys. Rev. Letters, 26, 432 (1971).CrossRefGoogle Scholar
  44. 44.
    Hagström, S. B. M., Brodén, G., Héden, P. O., Löfgren, H.: J. Physique (Colloque CNRS no. 196) C 4–269 (1971).Google Scholar
  45. 45.
    Cox, P. A., Baer, Y., Jørgensen, C. K.: Chem. Phys. Letters, 22, 433 (1973).Google Scholar
  46. 46.
    Baer, Y., Busch, G.: J. Electron Spectroscopy, 5, 611 (1974).CrossRefGoogle Scholar
  47. 47.
    Dewar, M. J. S., Hashmall, J. A., Venier, C. G.: J. Am. Chem. Soc., 90, 1953 (1968).Google Scholar
  48. 48.
    Kollmar, H.: Chem. Phys. Letters, 8, 533 (1971).CrossRefGoogle Scholar
  49. 49.
    Dewar, M. J. S., Kollmar, H., Suck, A.: Theoret. Chim. Acta, 36, 125 (1975).CrossRefGoogle Scholar
  50. 50.
    Roothaan, C. C. J.: Rev. Mod. Phys., 32, 179 (1960).CrossRefGoogle Scholar
  51. 51.
    Slater, J. C.: Int. J. Quant. Chem., S3, 727 (1970); Adv. Quant. Chem., 6, 1 (1972).Google Scholar
  52. 52.
    Slater, J. C., Wood, J. H.: Int. J. Quant. Chem., 94, 3 (1971).Google Scholar
  53. 53.
    Johnson, K. H., Smith Jr., F. C.: Phys. Rev., B5, 831 (1972).Google Scholar
  54. 54.
    Slater, J. C., Johnson, J. H.: Phys. Rev., B5, 844 (1972).Google Scholar
  55. 55.
    Jørgensen, C. K.: Orbitals in Atoms and Molecules. London: Academic Press 1962.Google Scholar
  56. 56.
    Klopman, G.: J. Am. Chem. Soc., 86, 1463, 4550 (1964); J. Chem. Phys., 43, S 124 (1965).CrossRefGoogle Scholar
  57. 57.
    Baird, N. C., Whitehead, M.A., Sichel, J. M.: Theoret. Chim. Acta, 11, 38 (1968).CrossRefGoogle Scholar
  58. 58.
    Ferreira, R., Bates, J. K.: Theoret. Chim. Acta, 16, 111 (1970).CrossRefGoogle Scholar
  59. 59.
    The method is implicit in a paper by Longuet-Higgins, H. C., Pople J. A.: Proc. Phys. Soc., 68A, 591 (1955).Google Scholar
  60. 60.
    Ferreira, R.: J. Chem. Phys., 49, 2456 (1968).CrossRefGoogle Scholar
  61. 61.
    By “correct” we mean equal to that given by Roothaan's method (Ref. 50).Google Scholar
  62. 62.
    Mulliken, R. S.: J. Chem. Phys., 2, 782 (1934); 3, 586 (1935).CrossRefGoogle Scholar
  63. 63.
    Iczkowski, R. P., Margrave, J. L.: J. Am. Chem. Soc., 83, 3547 (1961).CrossRefGoogle Scholar
  64. 64.
    Hinze, J., Whitehead, M.A., Jaffe, H.H.: J. Am. Chem. Soc., 85, 148 (1963).CrossRefGoogle Scholar
  65. 65.
    Ferreira, R.: Adv. Chem. Phys., 13, 55 (1967).Google Scholar
  66. 66.
    Brundle, C. R., Robin, M. B., Kuebler, N.A., Basch, H.: J. Am. Chem. Soc., 94, 1451 (1972).CrossRefGoogle Scholar
  67. 67.
    Jørgensen, C. K.: Chimica Teorica, VIII Corso Estivo di Chimica, Milano, 1963, p. 63. Rome: Academia dei Lincei, 1965.Google Scholar
  68. 68.
    See, for example, the excellent book by Schläfer, H. L., Gliemann, G.: Basic Principles of Ligand Field Theory (translated by D.F. Ilten). London: Wiley-Interscience 1969, p. 105.Google Scholar
  69. 69.
    For example, the \(J_{\mu _{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu } } }\) integral for the highest occupied σ-orbital of the hexafluoroacetyl-acetonate ligand is small rather than large.Google Scholar
  70. 70.
    Hillier, J. H., Saunders, V. R.: Proc. Roy. Soc., A230, 161 (1970).Google Scholar
  71. 71.
    Jørgensen, C. K.: Structure and Bonding, Vol. 13, p. 199, Berlin-Heidelberg-New York 1973.Google Scholar
  72. 72.
    Jørgensen, C. K.; Prog. Inorg. Chem., 4, 73 (1962).Google Scholar
  73. 73.
    Quite recently it was shown (Giambiagi, M., Giambiagi, M.S., Ferreira, R., Blanck, S.: Chem. Phys. Letters, 38, 65 (1976)) that in trans-butadiene the derivatives of a given eigenvalue with respect to the occupation numbers of the other eigenfunctions are second-order terms when compared with the derivative of the eigen-value with respect to its own occupation number.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Ricardo Ferreira
    • 1
  1. 1.Departamento de FisicaUniversidade Federal de Pernambuco, Cidade UniversitáriaRecife-PeBrasil

Personalised recommendations