Advertisement

Ultrasonic degradation of polymers in solution

  • Arno Max Basedow
  • Klaus Heinrich Ebert
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 22)

Keywords

Shock Wave Ultrasonic Wave Polymer Molecule Cavitation Bubble Ultrasonic Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. 1.
    Alexander, P., Fox, M.: The role of free radicals in the degradation of high polymers by ultrasonic and by high-speed stirring. J. Polym. Sci. 12, 533 (1954).Google Scholar
  2. 2.
    Basedow, A. M., Ebert, K. H.: Zum Mechanismus des Abbaus von Polymeren in Lösung durch Ultraschall. Makromol. Chem. 176, 745 (1975).Google Scholar
  3. 3.
    Basedow, A. M.: Untersuchungen über den Abbau von Dextran durch Ultraschall in verschiedenen Lösungsmitteln. Thesis, University of Heidelberg, Faculty of Chemistry 1973.Google Scholar
  4. 4.
    Basedow, A. M., Ebert, K. H., Ederer, H., Hunger, H.: Die Bestimmung der Molekulargewichtsverteilung von Polymeren durch Permeationschromatographie an porösem Glas. Makromol. Chem. 177, 1501 (1976).Google Scholar
  5. 5.
    Bergmann, L.: Der Ultraschall. Hirzel Verlag (1954).Google Scholar
  6. 6.
    De Boer, J. H.: The influence of van der Waals forces and primary bonds on binding energy, strength and orientation. Trans. Far. Soc. 32, 10 (1936).Google Scholar
  7. 7.
    Bohn, L.: Schalldruckverlauf und Spektrum bei der Schwingungskavitation. Acustica 7, 201 (1957).Google Scholar
  8. 8.
    Blandamer, M. J.: Introduction to chemical ultrasonics. Academic Press 1973.Google Scholar
  9. 9.
    Bradbury, J. H., O'Shea, J. M.: The effect of ultrasonic irradiation on proteins. Austral. J. Biol. Sci. 26, 583 (1973).Google Scholar
  10. 10.
    Bueche, F.: Mechanical degradation of high polymers. J. Appl. Polymer Sci. 4 (10), 101 (1960).Google Scholar
  11. 11.
    Butyagin, P. Y.: Kinetics and nature of mechanochemical reactions. Russ. Chem. Rev. 40 (11), 901 (1971).Google Scholar
  12. 12.
    Chandra, S., Roy-Chowdhury, P., Biswas, A. B.: Ultrasonic degradation of sol rubber in solution. J. Appl. Polym. Sci. 8, 2653 (1964).Google Scholar
  13. 13.
    Chandra, S., Roy-Chowdhury, P., Biswas, A. B.: Ultrasonic degradation of macromolecules in solution. J. Appl. Polym. Sci. 10, 1089 (1966).Google Scholar
  14. 14.
    Chendke, P. K., Fogler, H. S.: Second-order sonochemical phenomena: extensions of previous work and applications in industrial processing. Chem. Eng. J. 8, 165 (1974).Google Scholar
  15. 15.
    Davison, P. F., Levinthal, C.: Degradation of deoxyribonucleic acid under hydrodynamic shearing forces. J. Mol. Biol. 3, 674 (1961).Google Scholar
  16. 16.
    Davison, P. F., Freifelder, D.: Studies in the sonic degradation of deoxyribonucleic acid, Biophys. J. 2, 235 (1962).Google Scholar
  17. 17.
    Él'Piner: Ultrasound: Physical, Chemical and Biological Effects. Consultants Bureau (1964).Google Scholar
  18. 18.
    Él'Tsefon, B. S., Berlin, A. A.: Investigations in the mechanochemistry of polymers XIII. Vysokomolekul. Soedin. 4, 1033 (1962).Google Scholar
  19. 19.
    Flügge, S.: Encyclopaedia of Physics 11/2 — 2. Springer Verlag (1962).Google Scholar
  20. 20.
    Flynn, H. G.: Physics of Acoustic Cavitation in Liquids. In: Physical acoustics Vol. 1-B. Mason, W. (ed.), p. 51. Academic Press 1964.Google Scholar
  21. 21.
    Fujiwara, H., Okazaki, K., Goto, K.: Mechanochemical reaction of polymers by ultrasonic irradiation I. J. Polym. Sci. 13, 953 (1975).Google Scholar
  22. 22.
    Glynn, P. A., Van der Hoff, B. M., Reilly, P. M.: A general model for prediction of molecular weight distributions of degraded polymers. J. Macromol. Sci. A6 (8) 1653 (1972).Google Scholar
  23. 23.
    Glynn, P. A., Van der Hoff, B. M.: Degradation of polystyrene in solution by ultrasonation. A molecular weight distribution study. J. Macromol. Sci. A7 (8), 1695 (1973).Google Scholar
  24. 24.
    Glynn, P. A., Van der Hoff, B. M.: The rate of degradation by ultrasonation of polystyrene in solution. J. Macromol. Sci. A8 (2), 429 (1974).Google Scholar
  25. 25.
    Gooberman, G.: Ultrasonics: Theory and application. Hart Publishing Co. 1969.Google Scholar
  26. 26.
    Gooberman, G.: Ultrasonic degradation of polystyrene. Part 1. J. Polym. Sci. 42, 25 (1960).Google Scholar
  27. 27.
    Gooberman, G., Lamb, J.: Ultrasonic degradation of polystyrene. Part 2. J. Polym. Sci. 42, 35 (1960).Google Scholar
  28. 28.
    Gooberman, G.: Ultrasonic degradation of polystyrene. Part 3. J. Polym. Sci. 47, 229 (1960).Google Scholar
  29. 29.
    Gueth, W.: Zur Entstehung der Stoßwellen bei der Kavitation. Acustica 6, 526 (1956).Google Scholar
  30. 30.
    Gueth, W., Mundry, E.: Kinematographische Untersuchungen der Schwingungskavitation. Acustica 7, 241 (1957).Google Scholar
  31. 31.
    Harrington, R. E., Zimm, B. H.: Degradation of polymers by controlled hydrodynamic shear. J. Phys. Chem. 69 (1), 161 (1965).Google Scholar
  32. 32.
    Harrington, R. E.: Degradation of polymers in high speed rotary homogenizers. J. Polym. Sci. 4, 489 (1966).Google Scholar
  33. 33.
    Henglein, A.: Die Auslösung und der Verlauf der Polymerisation des Acrylamids unter dem Einfluß von Ultraschallwellen. Makromol. Chem. 14, 15 (1954).Google Scholar
  34. 34.
    Henglein, A.: Die Reaktion des DPPH mit langkettigen freien Radikalen. Makromol. Chem. 15, 188 (1955).Google Scholar
  35. 35.
    Henglein, A.: Die Kombination von freien makromolekularen Radikalen, die durch Ultraschallabbau von Polymethacrylsäuremethylester und von Polystyrol gebildet werden. Makromol. Chem. 18, 37 (1956).Google Scholar
  36. 36.
    Heymach, G. J., Jost, D. E.: The alteration of molecular weight distributions of polymers by ultrasonic energy. J. Polym. Sci. C25, 145 (1968).Google Scholar
  37. 37.
    Hughes, D. E., Nyborg, W. L.: Cell disruption by ultrasound. Science 138, 108 (1962).Google Scholar
  38. 38.
    Jellinek, H. H., White, G.: The degradation of long-chain molecules by ultrasonic waves. 1. J. Polym. Sci. 4 (6), 745 (1951).Google Scholar
  39. 39.
    Jellinek, H. H., White, G.: The degradation of long-chain molecules by ultrasonic waves. 2. J. Polym. Sci. 6 (6), 757 (1951).Google Scholar
  40. 40.
    Jellinek, H. H., White, G.: The degradation of long-chain molecules by ultrasonic waves. 3. J. Polym. Sci. 7 (1), 21 (1951).Google Scholar
  41. 41.
    Jellinek, H. H., White, G.: The degradation of long-chain molecules by ultrasonic waves. 4. J. Polym. Sci. 7 (1), 33 (1951).Google Scholar
  42. 42.
    Jellinek, H. H., Brett, H. W.: Degradation of long-chain molecules by ultrasonic waves. 5. J. Polym. Sci. 13, 111 (1954).Google Scholar
  43. 43.
    Jellinek, H. H., Brett, H. W.: Degradation of long-chain molecules by ultrasonic waves. 6. J. Polym. Sci. 21, 535 (1956).Google Scholar
  44. 44.
    Jellinek, H. H.: Degradation of long-chain molecules by ultrasonic waves. 7. J. Polym. Sci. 22, 149 (1956).Google Scholar
  45. 45.
    Jellinek, H. H.: Degradation of long-chain molecules by ultrasonic waves. 8. J. Polym. Sci. 37, 485 (1959).Google Scholar
  46. 46.
    Johnson, W. R., Price, C. C.: Shear degradation of vinyl polymers in dilute solution by high-speed stirring. J. Polym. Sci. 45, 217 (1960).Google Scholar
  47. 47.
    Lippincott, E. R., Schroeder, R.: General relation between potential energy and internuclear distance for diatomic and polyatomic molecules. J. Chem. Phys. 23 (6), 1131 (1955).Google Scholar
  48. 48.
    Marique, L. A., Houghton, G.: Analog computer solution of the modified Rayleigh equation and parameters affecting cavitation. Can. J. Chem. Eng. 122 (1962).Google Scholar
  49. 49.
    Mark, H.: Some applications of ultrasonics in high-polymer research. J. Acoust. Soc. Am. 16 (3), 183 (1945).Google Scholar
  50. 50.
    Mason, W.: Physical Acoustics Vol. II-A, B. Academic Press 1965.Google Scholar
  51. 51.
    Mellen, R. H.: An experimental study of the collapse of a spherical cavity in water. J. Acoust. Soc. Am. 28 (3), 447 (1956).Google Scholar
  52. 52.
    Melville, H. W., Murray, A. J.: The ultrasonic degradation of polymers. Trans. Far. Soc. 46, 996 (1950).Google Scholar
  53. 53.
    Minnaert, M.: On musical air-bubbles and the sound of running water. Phil. Magaz. 16 (7), 235 (1933).Google Scholar
  54. 54.
    Mostafa, M. A.: Degradation of addition polymers by ultrasonic waves. 1. J. Polym. Sci. 22, 535 (1956).Google Scholar
  55. 55.
    Mostafa, M. A.: The degradation of addition polymers by ultrasonic waves. 2. J. Polym. Sci. 27, 473 (1958).Google Scholar
  56. 56.
    Mostafa, M. A.: Degradation of addition polymers by ultrasonic waves. 3. J. Polym. Sci. 28, 499 (1958).Google Scholar
  57. 57.
    Mostafa, M. A.: Degradation of addition polymers by ultrasonic waves. 4. J. Polym. Sci. 28, 519 (1958).Google Scholar
  58. 58.
    Mostafa, M. A.: Degradation of addition polymers by ultrasonic waves. 5. J. Polym. Sci. 33, 295 (1958).Google Scholar
  59. 59.
    Mostafa, M. A.: Degradation of addition polymers by ultrasonic waves. 6. J. Polym. Sci. 33, 311 (1958).Google Scholar
  60. 60.
    Mostafa, M. A.: A Mechanism of degradation of long-chain molecules by ultrasonic waves. J. Polym. Sci. 33, 323 (1958).Google Scholar
  61. 61.
    Nakano, A., Minoura, Y., Kasuya, T., Kawamura, S.: Degradation of poly(ethylene oxide) by high-speed stirring. J. Polym. Sci. 5, 125 (1967).Google Scholar
  62. 62.
    Nakano, A., Minoura, Y.: Degradation of polymers by high-speed stirring. J. Appl. Polym. Sci. 15, 927 (1971).Google Scholar
  63. 63.
    Nakano, A., Minoura, Y.: Effect of solvents on the degradation of polymers by high-speed stirring. J. Appl. Polym. Sci. 16, 627 (1972).Google Scholar
  64. 64.
    Noltingk, B. E.: The effects of Intense Ultrasonics in Liquids. In: Encyclopaedia of physics. Flügge, S. (ed.), p. 259. Springer-Verlag 1962.Google Scholar
  65. 65.
    Noltingk, B. E., Neppiras, E. A.: Cavitation produced by ultrasonics. Proc. Phys. Soc. B63, 674 (1950).Google Scholar
  66. 66.
    Noltingk, B. E., Neppiras, E. A.: Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc. Phys. Soc. B64 (12), 1032 (1951).Google Scholar
  67. 67.
    Nosov, V.: Ultrasonics in the chemical Industry. Consultants Bureau (1965).Google Scholar
  68. 68.
    Okuyama, M., Sata, N.: Der Ultraschallabbau langkettiger Moleküle. 1. Z. Elektrochem. 58 (3), 197 (1954).Google Scholar
  69. 69.
    Okuyama, M.: Der Ultraschallabbau langkettiger Moleküle und der Mechanismus der Kavitation. 2. Z. Elektrochem. 59 (6), 565 (1955).Google Scholar
  70. 70.
    Okuyama, M., Hirose, T.: Mechanics of ultrasonic degradation of linear high polymer and ultrasonic cavitation. J. Appl. Polym. Sci. 7, 591 (1963).Google Scholar
  71. 71.
    Okuyama, M., Hirose, T.: Physico-chemical approach to ultrasonic cavitation. Kolloid Zeitsch. 226 (1), 70 (1967).Google Scholar
  72. 72.
    Ovenall, D. W., Hastings, G. W.: The degradation of polymer molecules in solution under the influence of ultrasonic waves. 1. J. Polym. Sci. 33, 207 (1958).Google Scholar
  73. 73.
    Ovenall, D. W., Allen, P. E., Burnett, G. M., Hastings, G. W., Melville, H. W.: The degradation of polymer molecules in solution under the influence of ultrasonic waves. 2. J. Polym. Sci. 33, 213 (1958).Google Scholar
  74. 74.
    Ovenall, D. W.: Ultrasonic degradation of polymer molecules in solution: some comments on recent papers. J. Polym. Sci. 42, 455 (1960).Google Scholar
  75. 75.
    Porter, R. S., Cantow, M. J. Johnson, J. F.: Sonic degradation of polyisobutylene in solution. J. Appl. Phys. 35 (1), 15 (1964).Google Scholar
  76. 76.
    Porter, R. S., Cantow, M. J. Johnson, J. E.: Polymer degradation. 5. Changes in molecular weight distribution during sonic irradiation of polyisobutene. J. Appl. Polym. Sci. 11, 335 (1967).Google Scholar
  77. 77.
    Porter, R. S., Casale, A.: The mechanochemistry of high polymers. Rubber Chem. Techn. 1971, 534.Google Scholar
  78. 78.
    Pritchard, N. J., Hughes, D. E., Peacocke, A. R.: The ultrasonic degradation of biological macromolecules under condition of stable caviation. 1. Biopolymers 4, 259 (1966).Google Scholar
  79. 79.
    Pritchard, N. J., Peacocke, A. R.: The ultrasonic degradation of biological macromolecules under condition of stable cavitation. 2. Biopolymers 6, 605 (1968).Google Scholar
  80. 80.
    Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Magaz. 34, 94 (1917).Google Scholar
  81. 81.
    Richards, O. C., Boyer, P. D.: Chemical mechanism of sonic, acid, alkaline and enzymic degradation of DNA. J. Mol. Biol. 2, 327 (1965).Google Scholar
  82. 82.
    Schmid, J.: Kinematographische Untersuchungen der Einzelblasen-Kavitation. Acustica 9, 321 (1959).Google Scholar
  83. 83.
    Schmid, G., Rommel, O.: Zerreißen von Makromolekülen mit Ultraschall. Z. Physikal. Chem. 185 (2), 97 (1939).Google Scholar
  84. 84.
    Schmid, G.: Zur Kinetik der Ultraschalldepolymerisation. Z. Physikal. Chem. 186 (3), 113 (1940).Google Scholar
  85. 85.
    Schmid, G., Rommel, O.: Zerreißen von Makromolekülen mit Ultraschall. Z. Elektrochem. 45 (9), 659 (1939).Google Scholar
  86. 86.
    Schmid, G.: Zerreiben von Molekülen. Versuch einer Erklärung der depolymerisierenden Wirkung von Ultraschallwellen. Phys. Z. 41, 326 (1940).Google Scholar
  87. 87.
    Schmid, G., Beuttenmüller, E.: Ultraschallbeitrag zur Frage der Biegsamkeit der Makromoleküle. Z. Elektrochem. 49 (4–5), 325 (1943).Google Scholar
  88. 88.
    Schmid, G., Beuttenmüller, E.: Der Einfluß der Temperatur auf den Abbau von linearen Makromolekülen mit Ultraschall. Z. Elektrochem. 50 (9–10), 209 (1944).Google Scholar
  89. 89.
    Schmid, G., Poppe, W.: Die Frequenzunabhängigkeit des Ultraschallabbaus von Makromolekülen. Z. Elektrochem. 53 (1), 28 (1949).Google Scholar
  90. 90.
    Schmid, G., Paret, G., Pfleiderer, H.: Die mechanische Natur des Abbaus von Makromolekülen mit Ultraschall. Kolloid-Z. 124 (3), 150 (1951).Google Scholar
  91. 91.
    Schmid, G., Schneider, C., Henglein, A.: Die Veränderung der Polymer-Einheitlichkeit beim Ultraschall-Abbau von Polymethacrylsäuremethylester. Kolloid-Z. 148 (1–2), 73 (1956).Google Scholar
  92. 92.
    Schoon, T. G., Kretschmer, R.: Versuch einer Deutung bei der elektronenmikroskopischen Untersuchung von festen Polymeren. Kolloid-Z. 211 (1–2), 53 (1966).Google Scholar
  93. 93.
    Schoon, T. G., Rieber, G.: Theorie des Ultraschall-Abbaus von Polymeren in Lösung auf der Grundlage des Perlschnurmolekül-Modells. Angew. Makromol. Chem. 15 (226), 263 (1971).Google Scholar
  94. 94.
    Schoon, T. G., Rieber, G.: Ultraschallabbau und Mikromorphologie amorpher Hochpolymeren. Angew. Makromol. Chem. 23 (307), 43 (1972).Google Scholar
  95. 95.
    Schoon, T. G., Rieber, G.: Theorie des Ultraschallabbaus auf der Grundlage des Perlschnurmolekül-Modells. Angew. Makromol. Chem. 49 (704), 23 (1976).Google Scholar
  96. 96.
    Shaw, M. T., Rodriguez, F.: Ultrasonic degradation of polysiloxane solutions. J. Appl. Polym. Sci. 11, 991 (1967).Google Scholar
  97. 97.
    Smith, W. B., Temple, H. W.: Polymer studies by gel permeation chromatography. 4. The degradation of polystyrene by ultrasonics and by benzoyl peroxide. J. Phys. Chem. 72 (13), 4613 (1968).Google Scholar
  98. 98.
    Stuart, H.: Molekülstruktur. Springer-Verlag 1967.Google Scholar
  99. 99.
    Stuart, H.: Die Physik der Hochpolymeren. Vol. 1. Springer-Verlag 1952.Google Scholar
  100. 100.
    Suppanz, N.: Über Kinetik und Mechanismus des Abbaus von Polymeren in Lösung mit Ultraschall, Thesis, University of Heidelberg, Faculty of Chemistry 1972.Google Scholar
  101. 101.
    Thomas, B. B., Alexander, W. J.: Ultrasonic degradation of cellulose nitrate. 1. J. Polym. Sci. 15, 361 (1955).Google Scholar
  102. 102.
    Thomas, B. B., Alexander, W. J.: Ultrasonic degradation of cellulose nitrate. 2. J. Polym. Sci. 25, 285 (1957).Google Scholar
  103. 103.
    Thomas, J. R.: Sonic degradation of high polymers in solution. J. Phys. Chem. 63, 1725 (1959).Google Scholar
  104. 104.
    Thomas, J. R., De Vries, L.: Sonically induced heterolytic cleavage of polymethylsiloxane J. Phys. Chem. 63, 254 (1959).Google Scholar
  105. 105.
    Weissler, A.: Depolymerization by ultrasonic irradiation: the role of cavitation. J. Appl. Phys. 21, 171 (1950).Google Scholar
  106. 106.
    Weissler, A.: Cavitation in ultrasonic depolymerization. J. Appl. Phys. 23, 370 (1951).Google Scholar
  107. 107.
    Wilke, G., Altenburg, K.: Ultraschallabbau von Hochpolymeren. Plaste und Kautschuk 3 (10), 219 (1956).Google Scholar
  108. 108.
    Wilke, G., Altenburg, K.: Ultraschallabbau von Hochpolymeren. Plaste und Kautschuk 3 (11), 257 (1956).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Arno Max Basedow
    • 1
  • Klaus Heinrich Ebert
    • 1
  1. 1.Institut für Angewandte Physikalische ChemieUniversität HeidelbergHeidelberg

Personalised recommendations