Electro-optic methods for characterising macromolecules in dilute solution

  • Barry R. Jennings
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 22)


Dipole Moment Optical Rotation Pulse Electric Field Copper Phthalocyanine Permanent Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. 1.
    Kerr, J.: A new relation between electricity and light: Dielectrified media birefringent. Phil. Mag. 50, 337–348 (1875).Google Scholar
  2. 2.
    Yoshioka, K. and Watanabe, H.: Dielectric properties of proteins II Electric birefringence and dichroism: Physical principles and techniques of protein chemistry (Ed. S. Leach), p. 335–367. New York: Academic Press 1969.Google Scholar
  3. 3.
    O'Konski, C. T.: Kerr Effect in: Encyclopedia of polymer science and technology. New York: J. Wiley 9, 551–590 (1969).Google Scholar
  4. 4.
    Fredericq, E. and Houssier, C.: Electric dichroism and electric birefringence. London: Clarendon Press (1973).Google Scholar
  5. 5.
    Baily, E. D. and Jennings, B. R.: An apparatus for measurement of electrically induced birefringence, linear dichroism and optical rotation of macromolecular solutions and suspensions. J. Colloid and Interface Science 45, 177–189 (1973).Google Scholar
  6. 6.
    Peterlin, A. and Stuart, H. A.: Doppelbrechung, insbesondere künstliche Doppelbrechung. Handbuch und Jahrbuch der Chemischen Physik 8, sec 1 b, 1–115. Leipzig: Becker & Erler (1943).Google Scholar
  7. 7.
    Broersma, S.: Rotary diffusion constant of a cylindrical particle, J. Chem. Phys. 32, 1626–31 (1960).Google Scholar
  8. 8.
    Perrin, F.: Mouvement brownien d'un ellipsoide. I Dispersion diélectrique pour des molecules ellipsoidales. J. Phys. Rad. 5, 497–511 (1934).Google Scholar
  9. 9.
    Berger, M. N.: Addition polymers of monofunctional isocyanates. J. Macromol. Sci., Revs. Macromol. Chem. C9 (2), 269–303 (1973).Google Scholar
  10. 10.
    Jennings, B. R. and Brown, B. L.: The physical properties of polyisocyanates in solution. Europ. Polymer J. 7, 805–826 (1971).Google Scholar
  11. 11.
    Yu, H., Bur, A. J., and Fetters, L. J.: Rodlike behaviour of poly (n-butyl) isocyanate from dielectric measurements. J. Chem. Phys. 44, 2568–2576 (1966).Google Scholar
  12. 12.
    Hearst, J. E.: Rotary diffusion constants of stiff-chain macromolecules. J. Chem. Phys. 38, 1062–1065 (1963).Google Scholar
  13. 13.
    Baily, E. D. and Jennings, B. R.: Simple apparatus for pulsed electric dichroism measurements. Applied Optics 11, 527–532 (1972).Google Scholar
  14. 14.
    Jennings, B. R. and Baily, E. D.: Transient electric dichroism of macromolecules using a simple spectrophotometer. Nature 233, 162–163 (1971).Google Scholar
  15. 15.
    Foweraker, A. R. and Jennings, B. R.: Cells for simple longitudinal electric dichroism measurements. Laboratory Practice.Google Scholar
  16. 16.
    Robertson, J. M.: An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper and platinum compounds. J. Chem. Soc. Part I, 1935, 615–621.Google Scholar
  17. 17.
    Foweraker, A. R. and Jennings, B. R.: Orientation of the electronic transitions in crystalline copper phthalocyanine by means of electric dichroism. Spectrochim. Acta 31 A, 1075–1083 (1975).Google Scholar
  18. 18.
    Fresnel, A.: La Double Réfraction. Oeuvres 2, 479 (1868).Google Scholar
  19. 19.
    Partington, J. R.: An advanced treatise on physical chemistry, Vol. IV, p. 303. London: Longmans 1953.Google Scholar
  20. 20.
    Tinoco, I.: The optical rotation of oriented helices. I Electrical orientation of poly-γ-benzyl-L glutamate in ethylene dichloride. J. Amer. Chem. Soc. 81, 1540–1544 (1959).Google Scholar
  21. 21.
    Tinoco, I. and Hammerle, W. G.: The influence of an external electric field on the optical activity of fluids. J. Phys. Chem. 68, 1619–1623 (1956).Google Scholar
  22. 22.
    Jennings, B. R. and Baily, E. D.: Transient electric optical rotation for macromolecular characterisation. J. Polymer Sci. Symp. 42, 1121–1130 (1973).Google Scholar
  23. 23.
    Stacey, K. A.: Light scattering in physical chemistry. London: Butterworths 1956.Google Scholar
  24. 24.
    Huglin, M. B. (editor): Light scattering from polymer solutions. London: Academic Press 1972.Google Scholar
  25. 25.
    Wippler, C.: Diffusion de la lumière par les solutions macromoléculaires. J. Chim. Phys. 53, 316–351 (1956).Google Scholar
  26. 26.
    Jennings, B. R.: Electric field light scattering, Chapter 13 of Ref. (24).Google Scholar
  27. 27.
    Schweitzer, J. F. and Jennings, B. R.: Transient scattering changes induced by pulsed sinusoidal electric fields. J. Phys. D. (Appl. Phys.) 5, 297–309 (1972).Google Scholar
  28. 28.
    Jennings, B. R.: Structural information from the light scattered by solutions subjected to electric fields. Brit. Polymer J. 1, 70–75 (1969).Google Scholar
  29. 29.
    Jennings, B. R. and Schweitzer, J. F.: Electro-optic scattering from nitrocellulose solutions. Europ. Polymer J. 10, 459–464 (1974).Google Scholar
  30. 30.
    Stoylov, S. P. and Sokerov. S.: Transient electric light scattering. II Determination of distribution curves for solutions of polydisperse rods. J. Colloid Interface Sci. 27, 542–546 (1968).Google Scholar
  31. 31.
    Weill, G. and Hornick, C.: Polarisation of fluorescence of an orientated solution of rodlike particles bearing a fluorescent label. Biopolymers 10, 2029–2037 (1971).Google Scholar
  32. 32.
    Jennings, B. R. and Coles, H. J.: Laser-induced orientation in macromolecular suspensions. Nature 252, 33–34 (1974).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Barry R. Jennings
    • 1
  1. 1.Physics DepartmentBrunel UniversityUxbridgeU.K.

Personalised recommendations