Multiplicity functions on ω-automata

  • Marek Karpiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


We formulate some results on Function-and Recognition Multiplicities of ω-automata.


Formal Power Series Finite Automaton Tree Automaton Multiplicity Function Limitary Determinism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Büchi, On a decision method in restricted second order arithmetic, Proc. Internat. Congr. Logic, Method. and Philos. Sci. 1960, Stanford Univ. Press, Stanford, California, 1962, pp. 1–11.Google Scholar
  2. 2.
    J.R. Büchi, Decision methods in the theory of ordinals, Bull. Amer. Math. Soc. 71 (1965), 767–770.Google Scholar
  3. 3.
    S. Eilenberg, Automata, languages, and machines, Vol.A, Academic Press, New York, 1974.Google Scholar
  4. 4.
    M. Fliess, Propriétés booléennes des langages stochastiques, Math. Systems Theory 7 (1974), 353–359.CrossRefGoogle Scholar
  5. 5.
    J. Hartmanis and R.E. Stearns, Sets of numbers defined by finite automata, Amer. Math. Monthly 74 (1967), 539–542.Google Scholar
  6. 6.
    F.A. Hosch and L.H. Landweber, Finite delay solutions for sequential conditions, Proc. Symp. Automata, Languages, Programming, Paris 1972, North-Holland, Amsterdam, 1973, 45–60.Google Scholar
  7. 7.
    M. Karpiński, Almost deterministic ω-automata with existential output condition, Proc. Amer. Math. Soc. 53 (1975), 449–452.Google Scholar
  8. 8.
    M. Karpiński, Note on Multiplicity Languages, Manuscript (1975).Google Scholar
  9. 9.
    M. Karpiński, The Equality Problem of ω-Automata Multiplicities is Decidable, to appear.Google Scholar
  10. 10.
    L.H. Landweber, Decision problems for ω-automata, Math. Systems Theory 3 (1969), 376–384.CrossRefGoogle Scholar
  11. 11.
    R. McNaughton, Testing and generating infinite sequences by a finite automaton, Information and Control 9 (1966), 521–530.Google Scholar
  12. 12.
    M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1–35.Google Scholar
  13. 13.
    M.O. Rabin, Automata on infinite objects and Church's problem, Amer. Math. Soc., Reg. Conf. Ser. Math. 13 (1972), 1–22.Google Scholar
  14. 14.
    M.P. Schützenberger, Certain elementary families of automata, Proc. Symp. Math. Theory of Automata, Polytechnic Institute of Brooklyn, 1962, 139–153.Google Scholar
  15. 15.
    M.P. Schützenberger, Parties rationnelles d'un monoïde libre, Actes Congrès Internat. Math. Nice 3 (1970), pp. 281–282, Gauthier-Villars, Paris, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Marek Karpiński
    • 1
  1. 1.The Mathematical Institute of the Polish Academy of SciencesPoznańPoland

Personalised recommendations