Advertisement

The characteristic polynomial of a finite automaton

  • D. Perrin
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)

Abstract

We study certain decompositions of a finite automaton in relationship with the factorisations of a polynomial associated to it.

Keywords

Characteristic Polynomial Permutation Group Homomorphic Image Finite Automaton Transition Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ČERNÝ J. — On directable automata, Kybernetica, 7 (1971) 289–298Google Scholar
  2. [2]
    CLIFFORD A.H. and G.B. PRESTON — The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc. (1961)Google Scholar
  3. [3]
    EILENBERG S. — Automata, Languages and Machines, Vol. A, Academic Press (1974)Google Scholar
  4. [4]
    FELLER W. — An Introduction to Probability Theory and its Applications, Vol. 1, Wiley Publ. in Statistics (1957)Google Scholar
  5. [5]
    GANTMACHER F-R. — Théorie des Matrices (translated from Russian) Paris, Dunod (1966)Google Scholar
  6. [6]
    KROHN K.K., J.L. RHODES and R. TILSON — The prime decomposition theorem of the algebraic theory of machines, in Algebraic Theory of Machines, Languages and Semigrops (M.A. Arbib ed.) Academic Press (1968) 81–125Google Scholar
  7. [7]
    PERLES M., RABIN M.O. and E. SHAMIR — The theory of definite automata, IEEE Trans. on E.C., 12 (1963) 233–243Google Scholar
  8. [8]
    PERRIN D. — Codes Conjugués, Information and Control, 20, 3 (1972) 222–231CrossRefGoogle Scholar
  9. [9]
    PERRIN D. — Sur certains semigroupes syntaxiques, in Logique et Automates, Seminaires IRIA (1971) 169–177Google Scholar
  10. [10]
    PERRIN D. — Codes Bipréfixes et Groupes de Permutations, Thèse, Paris (1975)Google Scholar
  11. [11]
    PERROT J-F. — Une Théorie Algébrique des Automates finis monogènes, Symposia Mathematica, XV (1975) 201–244Google Scholar
  12. [12]
    SCHUTZENBERGER M.P. — On a special class of recurrent events, Annals of Math. Stat., 32 (1961) 1201–1213Google Scholar
  13. [13]
    SCHUTZENBERGER M.P. — Sur certains sous-monoïdes libres, Bull. Soc. Math. de France, 93 (1965) 209–223Google Scholar
  14. [14]
    WIELANDT H. — Finite Permutation Groups, Academic Press (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • D. Perrin
    • 1
  1. 1.Departement de MathématiquesUniversité Paris VIIParis Cedex 05

Personalised recommendations