Semigroup characterizations of some language varieties

  • Robert Knast
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


Congruence Class Testable Language Language Variety Semigroup Variety Definite Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brzozowski J.A., (1975)1, Run languages, Bericht Nr.87, Institut für Rechner-und Programstructuren, Gesellschaft für Matematik und Datenverarbeitung mbH, Bonn, Germany, 17 pp.Google Scholar
  2. Brzozowski J.A., (1975)2, On aperiodic I-monoids, Technical Report, University of Waterloo, Waterloo, Ont., Canada.Google Scholar
  3. Brzozowski J.A., (1976), Hiererchies of aperiodic Languages, Revue Francaise d'Automatique, Informatique, Recherche Operetionnelle Série Rouge (Informatique Théorique)—to appear in no. 3.Google Scholar
  4. Brzozowski J.A., Knast R., (1976), The dot-depth hiererchy of star free languages is infinite, Technical Report, University of Waterloo, Waterloo, Canada.Google Scholar
  5. Brzozowski J.A., Simon I., (1973), Characterizations of locally testable events, Discrete Mathematics, vol. 4, pp. 243–271.CrossRefGoogle Scholar
  6. Cohen R.S., Brzozowski J.A. (1971), Dot-depth of star-free events, J. Computer and System Sc., vol. 5, pp. 1–16.Google Scholar
  7. Eilenberg S. (1974), Automata, languages, and machines, vol. A, New York, Academic Press, (1976) vol. B (in press)Google Scholar
  8. Ginzburg A., (1966), About some properties of definite, reverse definite and related automata, IEEE Trans. Electronic Computers EC-15, pp. 806–810.Google Scholar
  9. Knast R., (1975), Semigroups characterization of dot-depth one languages, unpublished manuscript.Google Scholar
  10. Knast R., (1976), Periodic and strictly periodic local testability, Technical Report, Institute of Mathematics, Polish Academy of Sciences, Poznań, Poland.Google Scholar
  11. McNaughton R., (1974), Algebraic decision procedures for local testability, Math. Systems Theory, vol. 8, pp. 60–76.CrossRefGoogle Scholar
  12. McNaughton R., Papert S., (1971), Counter-free automata, Cambridge, The MIT Press (MIT Research Monographs, 65).Google Scholar
  13. Perrin D., (1971), Sur certains semigroupes syntaxiques, Séminaires de 'IRIA, Logiques et Automates, pp. 169–177.Google Scholar
  14. Schutzenberger M.P., (1965), On finite monoids having only trivial subgroups, Inform. and Control, vol. 8. pp. 190–194.CrossRefGoogle Scholar
  15. Schützenberger M.P., (1966), On a family of sets related to McNaughton's L-language, “Automata Theory”, edited by E.R. Caianiello, New York, Academic Press. pp. 320–324.Google Scholar
  16. Simon I., (1972), Hierarchies of events with dot-depth one, Ph.D. Thesis, Dept. of Applied Analysis and Computer Science, University of Waterloo, Waterloo, Ont., Canada.Google Scholar
  17. Simon I., (1975), Piecewise testable events, 2nd GI-Professional Conference on Automata Theory and Formal Languages, Kaiserlautern, Germany. (To appear in Lecture Notes in Computer Science, Springer-Verlag, Berlin).Google Scholar
  18. Zalcstein Y., (1972), Locally testable languages, J. Computer and System Sc., vol. 6. pp. 151–167.Google Scholar
  19. Zalcstein Y., (1973)1, Locally testable semigroups, Semigroup Forum, vol. 5. pp. 216–227.Google Scholar
  20. Zalcstein Y., (1973)2, Syntactic semigroups of some classes of star-free languages, "Automata, Languages and Programming", Proceedings of a Symposium, Rocquencourt, Amsterdam, North-Holland Publishing Company, pp. 135–144.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Robert Knast
    • 1
  1. 1.Mathematical Institute of the Polish Academy of SciencesPoznańPoland

Personalised recommendations